scholarly journals Rifampicin Induces Gene, Protein, and Activity of P-Glycoprotein (ABCB1) in Human Precision-Cut Intestinal Slices

2021 ◽  
Vol 12 ◽  
Author(s):  
Ondrej Martinec ◽  
Carin Biel ◽  
Inge A. M. de Graaf ◽  
Martin Huliciak ◽  
Koert P. de Jong ◽  
...  

P-glycoprotein (ABCB1), an ATP-binding cassette efflux transporter, limits intestinal absorption of its substrates and is a common site of drug–drug interactions. Drug-mediated induction of intestinal ABCB1 is a clinically relevant phenomenon associated with significantly decreased drug bioavailability. Currently, there are no well-established human models for evaluating its induction, so drug regulatory authorities provide no recommendations for in vitro/ex vivo testing drugs’ ABCB1-inducing activity. Human precision-cut intestinal slices (hPCISs) contain cells in their natural environment and express physiological levels of nuclear factors required for ABCB1 induction. We found that hPCISs incubated in William’s Medium E for 48 h maintained intact morphology, ATP content, and ABCB1 efflux activity. Here, we asked whether rifampicin (a model ligand of pregnane X receptor, PXR), at 30 μM, induces functional expression of ABCB1 in hPCISs over 24- and 48-h incubation (the time to allow complete induction to occur). Rifampicin significantly increased gene expression, protein levels, and efflux activity of ABCB1. Moreover, we described dynamic changes in ABCB1 transcript levels in hPCISs over 48 h incubation. We also observed that peaks of induction are achieved among donors at different times, and the extent of ABCB1 gene induction is proportional to PXR mRNA levels in the intestine. In conclusion, we showed that hPCISs incubated in conditions comparable to those used for inhibition studies can be used to evaluate drugs’ ABCB1-inducing potency in the human intestine. Thus, hPCISs may be valuable experimental tools that can be prospectively used in complex experimental evaluation of drug–drug interactions.

2014 ◽  
Vol 59 (1) ◽  
pp. 96-104 ◽  
Author(s):  
Rita Piedade ◽  
Stefanie Traub ◽  
Andreas Bitter ◽  
Andreas K. Nüssler ◽  
José P. Gil ◽  
...  

ABSTRACTMalaria patients are frequently coinfected with HIV and mycobacteria causing tuberculosis, which increases the use of coadministered drugs and thereby enhances the risk of pharmacokinetic drug-drug interactions. Activation of the pregnane X receptor (PXR) by xenobiotics, which include many drugs, induces drug metabolism and transport, thereby resulting in possible attenuation or loss of the therapeutic responses to the drugs being coadministered. While several artemisinin-type antimalarial drugs have been shown to activate PXR, data on nonartemisinin-type antimalarials are still missing. Therefore, this study aimed to elucidate the potential of nonartemisinin antimalarial drugs and drug metabolites to activate PXR. We screened 16 clinically used antimalarial drugs and six major drug metabolites for binding to PXR using the two-hybrid PXR ligand binding domain assembly assay; this identified carboxymefloquine, the major and pharmacologically inactive metabolite of the antimalarial drug mefloquine, as a potential PXR ligand. Two-hybrid PXR-coactivator and -corepressor interaction assays and PXR-dependent promoter reporter gene assays confirmed carboxymefloquine to be a novel PXR agonist which specifically activated the human receptor. In the PXR-expressing intestinal LS174T cells and in primary human hepatocytes, carboxymefloquine induced the expression of drug-metabolizing enzymes and transporters on the mRNA and protein levels. The crucial role of PXR for the carboxymefloquine-dependent induction of gene expression was confirmed by small interfering RNA (siRNA)-mediated knockdown of the receptor. Thus, the clinical use of mefloquine may result in pharmacokinetic drug-drug interactions by means of its metabolite carboxymefloquine. Whether thesein vitrofindings are ofin vivorelevance has to be addressed in future clinical drug-drug interaction studies.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4175-4175
Author(s):  
Bao-An Chen ◽  
Jue-Qiong Wang ◽  
Jia-Hua Ding ◽  
Feng Gao ◽  
Jian Chen ◽  
...  

Abstract Objective: The present study aimed to evaluate the MDR reversal activity of bromotetrandrine (BrTet), a bromized derivative of tetrandrine (Tet), in vitro. Methods: Drug sensitivity was determined using the MTT assay. Adriamycin (ADM) accumulation, the protein levels of P-glycoprotein (P-gp) and the apoptotic changes were analyzed by fluorospectrophotometry, respectively. The mRNA levels of P-gp was determined by RT-PCR. Results: BrTet at 0.25, 0.5 and reversed ADM resistance in MDR K562/A02 cells dose-dependently and its potency was greater than that of Tet at the same concentrations. The IC50 of ADM for K562 and K562/A02 cells were 55.122 mg/l and 1.1373 mg/l, respectively. Treating K562/A02 cells with BrTet(1uM)and TTD(1uM)both for 48 hours partially restored the sensitivity of K562/A02 cells to ADM (IC50 were 4.7729 mg/l and 13.584 mg/l respectively) but had not effect on K562 cells. The fold reversal (FR) were 11.55 and 4.06 respectively. K562/A02 cells showed apoptotic characteristics after treated with Brtet and Tet both for 48 hours compared with control group(apoptosis rate was 61.1%, 11.1% and 9.9%,respectively); Fluorospectrophotometric assay showed that BrTet significantly increased the intracellular accumulation of ADM in K562/A02 cells in a dose-dependent manner. The fluorescence intensity of intracellelar ADM in K562/A02 cells treated with ADM(1mg/L)was 33% of that in K562 cells. BrTet and Tet elevated the intracellular ADM concentration in K562/A02 cells up to 52% and 69%,respectively. BrTet also inhibited the overexpression of P-gp in K562/A02 cells. The fluorescence intensity of P-gp in K562 and K562/A02 cells was 0.5 and 97.97.The P-gp expression was down after treated with BrTet and TTD (65.05 and 54.86). The mdr1 mRNA was also down regulated. Conclusions: BrTet showed significant MDR reversal activity in vitro. Its activity may be related to the inhibition of P-gp overexpression and the increase in intracellular accumulation of anticancer drugs. BrTet may be a promising MDR modulator for eventual assessment in the clinic.


Author(s):  
Anwar Anwar Mohamed ◽  
Ayman El-Kadi

During the last couple of decades, efflux transporters have received considerable attention due to their ability to alter, either beneficially or detrimentally the pharmacokinetic and pharmacodynamic for an administered drug. The expression of the energy dependent transporter, member of the ATP binding cassette (ABC) transporters superfamily, is not only limited to cancerous tissues, but is also expressed in different normal tissues and barriers such as the blood brain barrier and placenta. Furthermore, its unique distribution at the sites of absorption such as small intestine has been shown to greatly affect the bioavailability of the drug-substrates, and thus altering their effect. In addition, the striking overlap of substrates between P-glycoprotein (P-gp) and the phase I enzyme cytochrome P450 3A4 (CYP3A4) in addition to their coexistence at the same site has been shown to act synergistically to decrease oral drug bioavailability. Interestingly, the co-administration of a drug-substrate and an inhibitor of P-gp have been shown to increase the plasma concentration of the drug-substrates causing lethal toxicities that warrants critical evaluation of drugs as whether or not they could be substrates or inhibitors to P-gp. The availability of various in vitro cell culture models and in vivo knockout models of P-gp are currently serving the pharmaceutical sciences community to deliver safer drug use and lower risks of drug-drug interactions based on P-gp interactions. Therefore, the purpose of the current review is to summarize the current knowledge about the role of P-gp in determining drug ADME profile, and its role in drug-drug-interactions and their clinical implications.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chengwu Xiao ◽  
Wei Zhang ◽  
Meimian Hua ◽  
Huan Chen ◽  
Bin Yang ◽  
...  

Abstract Background The tripartite motif (TRIM) family proteins exhibit oncogenic roles in various cancers. The roles of TRIM27, a member of the TRIM super family, in renal cell carcinoma (RCC) remained unexplored. In the current study, we aimed to investigate the clinical impact and roles of TRIM27 in the development of RCC. Methods The mRNA levels of TRIM27 and Kaplan–Meier survival of RCC were analyzed from The Cancer Genome Atlas database. Real-time PCR and Western blotting were used to measure the mRNA and protein levels of TRIM27 both in vivo and in vitro. siRNA and TRIM27 were exogenously overexpressed in RCC cell lines to manipulate TRIM27 expression. Results We discovered that TRIM27 was elevated in RCC patients, and the expression of TRIM27 was closely correlated with poor prognosis. The loss of function and gain of function results illustrated that TRIM27 promotes cell proliferation and inhibits apoptosis in RCC cell lines. Furthermore, TRIM27 expression was positively associated with NF-κB expression in patients with RCC. Blocking the activity of NF-κB attenuated the TRIM27-mediated enhancement of proliferation and inhibition of apoptosis. TRIM27 directly interacted with Iκbα, an inhibitor of NF-κB, to promote its ubiquitination, and the inhibitory effects of TRIM27 on Iκbα led to NF-κB activation. Conclusions Our results suggest that TRIM27 exhibits an oncogenic role in RCC by regulating NF-κB signaling. TRIM27 serves as a specific prognostic indicator for RCC, and strategies targeting the suppression of TRIM27 function may shed light on future therapeutic approaches.


Pathobiology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Ying Xie ◽  
Yuanyuan Ruan ◽  
Huimei Zou ◽  
Yixin Wang ◽  
Xin Wu ◽  
...  

<b><i>Objective:</i></b> The goal of the present study was to determine the expression of yes-associated protein 1 (YAP1) in renal tissues of mice with lupus nephritis (LN) and elucidate its role in the progression of renal fibrosis. <b><i>Methods:</i></b> C57BL/6 mice and MRL/lpr mice were selected for experimental comparison. Mouse kidney tissues were removed and sectioned for hematoxylin and eosin staining, Masson’s trichome staining, Sirius staining, and immunohistochemistry. The mRNA and protein levels of YAP1 in mouse kidney tissues were detected, and the correlation between YAP1 and fibronectin (FN) mRNA levels was analyzed. Mouse renal epithelial cells were used for in vitro experiments. After transfection and stimulation, the cells were divided into 4 groups, namely the C57BL/6 serum group (group 1), the MRL/lpr serum group (group 2), the MRL/lpr serum + siRNA-negative control group (group 3), and the MRL/lpr serum + siRNA-YAP1 group (group 4). Epithelial-mesenchymal transition (EMT) markers in each group were detected by Western blotting and immunofluorescence staining. Serum creatinine, blood urea nitrogen, and urinary protein levels were detected and assessed for their correlation with YAP1 mRNA levels by Spearman’s analysis. <b><i>Results:</i></b> Compared to C57BL/6 mice, MRL/lpr mice exhibited obvious changes in fibrosis in renal tissues. In addition, YAP1 expression was significantly higher in the renal tissues of MRL/lpr mice than in those of C57BL/6 mice, and YAP1 mRNA levels were positively correlated with those of FN. YAP1 silencing in lupus serum-stimulated cells could effectively relieve serum-induced EMT. Finally, we observed that YAP1 mRNA levels in mouse kidney tissue were significantly and positively correlated with the degree of renal function injury. <b><i>Conclusion:</i></b> YAP1 expression in the kidney tissues of LN mice was higher than that observed in normal mice, indicating that YAP1 may play an important role in the occurrence and development of LN.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 784
Author(s):  
Aleph M. S. Souza ◽  
Renato C. A. Ribeiro ◽  
Gleyse K. L. O. Pinheiro ◽  
Francisco I. Pinheiro ◽  
Wógenes N. Oliveira ◽  
...  

Onychomycosis induced by Candida spp. has several limitations regarding its treatment. Nail lacquers display the potential to overcome these drawbacks by providing therapeutic compliance and increasing local drug bioavailability. Thus, this work aimed to produce a nail lacquer loaded with Amphotericin B (AmB) and evaluate its performance. The AmB-loaded nail lacquer was produced and preliminarily characterized. An AmB quantification method was developed. Stability, drug release, permeability and anti-Candida activity assays were conducted. The analytical method validation met the acceptance criteria. The drug loading efficiency was 100% (0.02 mg/g of total product), whereas the AmB stability was limited to ≅ 7 days (≅ 90% remaining). The nail lacquer displayed a drying time of 187 s, non-volatile content of around 20%w/w, water-resistance of approximately 2%w/w of weight loss and satisfactory in vitro adhesion. Moreover, the in vitro antifungal activity against different Candida spp. strains was confirmed. The AmB release and the ex vivo permeability studies revealed that AmB leaves the lacquer and permeates the nail matrix in 47.76 ± 0.07% over 24 h. In conclusion, AmB-loaded nail lacquer shows itself as a promising extemporaneous dosage form with remarkable anti-Candida activity related to onychomycosis.


Diabetologia ◽  
2021 ◽  
Author(s):  
Juliana de Almeida-Faria ◽  
Daniella E. Duque-Guimarães ◽  
Thomas P. Ong ◽  
Lucas C. Pantaleão ◽  
Asha A. Carpenter ◽  
...  

Abstract Aims/hypothesis Levels of the microRNA (miRNA) miR-126-3p are programmed cell-autonomously in visceral adipose tissue of adult offspring born to obese female C57BL/6J mice. The spectrum of miR-126-3p targets and thus the consequences of its dysregulation for adipocyte metabolism are unknown. Therefore, the aim of the current study was to identify novel targets of miR-126-3p in vitro and then establish the outcomes of their dysregulation on adipocyte metabolism in vivo using a well-established maternal obesity mouse model. Methods miR-126-3p overexpression in 3T3-L1 pre-adipocytes followed by pulsed stable isotope labelling by amino acids in culture (pSILAC) was performed to identify novel targets of the miRNA. Well-established bioinformatics algorithms and luciferase assays were then employed to confirm those that were direct targets of miR-126-3p. Selected knockdown experiments were performed in vitro to define the consequences of target dysregulation. Quantitative real-time PCR, immunoblotting, histology, euglycaemic–hyperinsulinaemic clamps and glucose tolerance tests were performed to determine the phenotypic and functional outcomes of maternal programmed miR-126-3p levels in offspring adipose tissue. Results The proteomic approach confirmed the identity of known targets of miR-126-3p (including IRS-1) and identified Lunapark, an endoplasmic reticulum (ER) protein, as a novel one. We confirmed by luciferase assay that Lunapark was a direct target of miR-126-3p. Overexpression of miR-126-3p in vitro led to a reduction in Lunapark protein levels and increased Perk (also known as Eif2ak3) mRNA levels and small interference-RNA mediated knockdown of Lunapark led to increased Xbp1, spliced Xbp1, Chop (also known as Ddit3) and Perk mRNA levels and an ER stress transcriptional response in 3T3-L1 pre-adipocytes. Consistent with the results found in vitro, increased miR-126-3p expression in adipose tissue from adult mouse offspring born to obese dams was accompanied by decreased Lunapark and IRS-1 protein levels and increased markers of ER stress. At the whole-body level the animals displayed glucose intolerance. Conclusions/interpretation Concurrently targeting IRS-1 and Lunapark, a nutritionally programmed increase in miR-126-3p causes adipose tissue insulin resistance and an ER stress response, both of which may contribute to impaired glucose tolerance. These findings provide a novel mechanism by which obesity during pregnancy leads to increased risk of type 2 diabetes in the offspring and therefore identify miR-126-3p as a potential therapeutic target. Graphical abstract


Reproduction ◽  
2011 ◽  
Vol 142 (4) ◽  
pp. 581-591 ◽  
Author(s):  
Claire Glister ◽  
Leanne Satchell ◽  
Phil G Knight

Evidence supports local roles for transforming growth factor β superfamily members including activins and bone morphogenetic proteins (BMP) in follicle development. Access of these ligands to signalling receptors is likely modulated by extracellular binding proteins (BP). In this study, we comparedex vivoexpression of four BPs (chordin, gremlin, noggin and follistatin) in granulosal (GC) and theca interna (TC) compartments of developing bovine antral follicles (1–18 mm). Effects of FSH and IGF on BMP and BP expression by cultured GC, and effects of LH and BMPs on BP expression by cultured TC were also examined. Follicular expression of all four BP transcripts was higher in GC than TC compartments (P<0.001) a finding confirmed by immunohistochemistry. Follicle category affected (P<0.01) gremlin and follistatin mRNA abundance, with a significant cell-type×follicle category interaction for chordin, follistatin and noggin. Noggin transcript abundance was lower (P<0.05) in GC of large ‘E-active’ than ‘E-inactive’ follicles while follistatin mRNA level was higher (P<0.01). FSH enhanced CYP19, FSHR, INHBA and follistatin by GC without affecting BMP or BMP–BP expression. IGF increased CYP19 and follistatin, reduced BMP4, noggin and gremlin but did not affect chordin orFSHRmRNA levels. LH increased TC androgen secretion but had no effect on BMP or BP expression. BMPs uniformly suppressed TC androgen production whilst increasing chordin, noggin and gremlin mRNA levels up to 20-fold (P<0.01). These findings support the hypothesis that extracellular BP, mostly from GC, contribute to the regulation of intrafollicular BMP/activin signalling. Enhancement of thecal BP expression by BMP implies an autoregulatory feedback role to prevent excessive signalling.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Lixia Ji ◽  
Lixia Cheng ◽  
Zhihong Yang

Objective.Lens osmotic expansion, provoked by overactivated aldose reductase (AR), is the most essential event of sugar cataract. Chloride channel 3 (Clcn3) is a volume-sensitive channel, mainly participating in the regulation of cell fundamental volume, and P-glycoprotein (P-gp) acts as its modulator. We aim to study whether P-gp and Clcn3 are involved in lens osmotic expansion of galactosemic cataract.Methods and Results.In vitro, lens epithelial cells (LECs) were primarily cultured in gradient galactose medium (10–60 mM), more and more vacuoles appeared in LEC cytoplasm, and mRNA and protein levels of AR, P-gp, and Clcn3 were synchronously upregulated along with the increase of galactose concentration. In vivo, we focused on the early stage of rat galactosemic cataract, amount of vacuoles arose from equatorial area and scattered to the whole anterior capsule of lenses from the 3rd day to the 9th day, and mRNA and protein levels of P-gp and Clcn3 reached the peak around the 9th or 12th day.Conclusion. Galactosemia caused the osmotic stress in lenses; it also markedly leads to the upregulations of AR, P-gp, and Clcn3 in LECs, together resulting in obvious osmotic expansion in vitro and in vivo.


Reproduction ◽  
2010 ◽  
Vol 139 (4) ◽  
pp. 759-769 ◽  
Author(s):  
F P Yuan ◽  
X Li ◽  
J Lin ◽  
C Schwabe ◽  
E E Büllesbach ◽  
...  

LH receptor knockout (LhrKO) male mice exhibit a bilateral cryptorchidism resulting from a developmental defect in the gubernaculum during the inguinoscrotal phase of testis descent, which is corrected by testosterone replacement therapy (TRT).In vivoandin vitroexperiments were conducted to investigate the roles of the androgen receptor (AR) and RXFP2 signals in regulation of gubernacular development inLhrKO animals. This study demonstrated that AR and RXFP2 proteins were expressed in the gubernaculum during the entire postnatal period. TRT normalized gubernacular RXFP2 protein levels inLhrKO mice. Organ and primary cell cultures of gubernacula showed that 5α-dihydrotestosterone (DHT) upregulated the expression ofRxfp2which was abolished by the addition of an AR antagonist, flutamide. A single s.c. testosterone injection also led to a significant increase inRxfp2mRNA levels in a time-dependent fashion inLhrKO animals. DHT, natural and synthetic insulin-like peptide 3 (INSL3), or relaxin alone did not affect proliferation of gubernacular mesenchymal cells, while co-treatments of DHT with either INSL3 or relaxin resulted in an increase in cell proliferation, and they also enhanced the mesenchymal cell differentiation toward the myogenic pathway, which included a decrease in a mesenchymal cell marker, CD44 and the expression of troponin. These effects were attenuated by the addition of flutamide, siRNA-mediatedRxfp2knockdown, or by an INSL3 antagonist. Co-administration of an INSL3 antagonist curtailed TRT-induced inguinoscrotal testis descent inLhrKO mice. Our findings indicate that the RXFP2 signaling pathway plays an important role in mediating androgen action to stimulate gubernaculum development during inguinoscrotal testis descent.


Sign in / Sign up

Export Citation Format

Share Document