scholarly journals Anticonstriction Effect of MCA in Rats by Danggui Buxue Decoction

2021 ◽  
Vol 12 ◽  
Author(s):  
Ying Guo ◽  
Yating Zhang ◽  
Ya Hou ◽  
Pengmei Guo ◽  
Xiaobo Wang ◽  
...  

Objective: Danggui Buxue decoction (DBD), consisting of Angelicae Sinensis Radix (ASR) and Astragali Radix (AR), is a famous prescription with the function of antivasoconstriction. This study intends to probe its mechanisms on the relaxation of the middle cerebral artery (MCA).Methods: Vascular tension of rat MCA was measured using a DMT620 M system. First, the identical series of concentrations of DBD, ASR, and AR were added into resting KCl and U46619 preconstricted MCA. According to the compatibility ratio, their dilatation effects were further investigated on KCl and U46619 preconstricted vessels. Third, four K+ channel blockers were employed to probe the vasodilator mechanism on KCl-contracted MCA. We finally examined the effects of DBD, ASR, and AR on the vascular tone of U46619-contracted MCA in the presence or absence of Ca2+.Results: Data suggested that DBD, ASR, and AR can relax on KCl and U46619 precontracted MCA with no effects on resting vessels. The vasodilator effect of ASR was greater than those of DBD and AR on KCl-contracted MCA. For U46619-contracted MCA, ASR showed a stronger vasodilator effect than DBD and AR at low concentrations, but DBD was stronger than ASR at high concentrations. Amazingly, the vasodilator effect of DBD was stronger than that of AR at all concentrations on two vasoconstrictors which evoked MCA. The vasodilator effect of ASR was superior to that of DBD at a compatibility ratio on KCl-contracted MCA at low concentrations, while being inferior to DBD at high concentrations. However, DBD exceeded AR in vasodilating MCA at all concentrations. For U46619-constricted MCA, DBD, ASR, and AR had almost identical vasodilation. The dilation of DBD and AR on KCl-contracted MCA was independent of K+ channel blockers. However, ASR may inhibit the K+ channel opening partially through synergistic interactions with Gli and BaCl2. DBD, ASR, and AR may be responsible for inhibiting [Ca2+]out, while ASR and AR can also inhibit [Ca2+]in.Conclusion: DBD can relax MCA with no effects on resting vessels. The mechanism may be related to ASR’s inhibition of KATP and Kir channels. Meanwhile, the inhibition of [Ca2+]out by DBD, ASR, and AR as well as the inhibition of [Ca2+]in by ASR and AR may contribute to dilate MCA.

2016 ◽  
Vol 71 (3) ◽  
pp. 422-431 ◽  
Author(s):  
Rui-qiong Luo ◽  
Fang Wei ◽  
Shu-shi Huang ◽  
Yue-ming Jiang ◽  
Shan-lei Zhang ◽  
...  

The examination of insulin (Ins) exocytosis at the single-cell level by conventional methods, such as electrophysiological approaches, total internal reflection imaging, and two-photon imaging technology, often requires an invasive microelectrode puncture or label. In this study, high concentrations of glucose and potassium chloride were used to stimulate β cell Ins exocytosis, while low concentrations of glucose and calcium channel blockers served as the blank and negative control, respectively. Laser tweezers Raman spectroscopy (LTRS) was used to capture the possible Raman scattering signal from a local zone outside of the cell edge. The results show that the frequencies of the strong signals from the local zones outside the cellular edge in the stimulated groups are greater than those of the control. The Raman spectra from the cellular edge, Ins and cell membrane were compared. Thus, local Ins exocytosis activity outside pancreatic β cells might be observed indirectly using LTRS, a non-invasive optical method.


1992 ◽  
Vol 68 (05) ◽  
pp. 570-576 ◽  
Author(s):  
Mary A Selak

SummaryWe have previously demonstrated that human neutrophil cathepsin G is a strong platelet agonist that binds to a specific receptor. This work describes the effect of neutrophil elastase on cathepsin G-induced platelet responses. While platelets were not activated by high concentrations of neutrophil elastase by itself, elastase enhanced aggregation, secretion and calcium mobilization induced by low concentrations of cathepsin G. Platelet aggregation and secretion were potentiated in a concentration-dependent manner by neutrophil elastase with maximal responses observable at 200 nM. Enhancement was observed when elastase was preincubated with platelets for time intervals of 10–60 s prior to addition of a low concentration of cathepsin G and required catalytically-active elastase since phenylmethanesulphonyl fluoride-inhibited enzyme failed to potentiate cell activation. Neutrophil elastase potentiation of platelet responses induced by low concentrations of cathepsin G was markedly inhibited by creatine phosphate/creatine phosphokinase and/or indomethacin, indicating that the synergism between elastase and cathepsin G required the participation of ADP and thromboxane A2. On the other hand, platelet responses were not attenuated by the PAF antagonist BN 52021, signifying that PAF-acether did not play a role in elastase potentiation. At higher concentrations porcine pancreatic elastase exhibits similar effects to neutrophil elastase, demonstrating that the effect of elastase was not unique to the neutrophil protease. While neutrophil elastase failed to alter the ability of cathepsin G to hydrolyze a synthetic chromogenic substrate, preincubation of platelets with elastase increased the apparent affinity of cathepsin G binding to platelets. In contrast to their effect on cathepsin G-induced platelet responses, neither neutrophil nor pancreatic elasatse potentiated aggregation or dense granule release initiated by ADP, PAF-acether, arachidonic acid or U46619, a thromboxane A2 mimetic. Moreover, unlike its effect on cathepsin G, neutrophil elastase inhibited thrombin-induced responses. The current observations demonstrate that elastase can potentiate platelet responses mediated by low concentrations of cathepsin G, suggesting that both enzymes may function synergistically to activate platelets under conditions where neutrophil degranulation occurs.


1989 ◽  
Vol 61 (02) ◽  
pp. 254-258 ◽  
Author(s):  
Margaret L Rand ◽  
Peter L Gross ◽  
Donna M Jakowec ◽  
Marian A Packham ◽  
J Fraser Mustard

SummaryEthanol, at physiologically tolerable concentrations, inhibits platelet responses to low concentrations of collagen or thrombin, but does not inhibit responses of washed rabbit platelets stimulated with high concentrations of ADP, collagen, or thrombin. However, when platelet responses to high concentrations of collagen or thrombin had been partially inhibited by prostacyclin (PGI2), ethanol had additional inhibitory effects on aggregation and secretion. These effects were also observed with aspirin- treated platelets stimulated with thrombin. Ethanol had no further inhibitory effect on aggregation of platelets stimulated with ADP, or the combination of ADP and epinephrine. Thus, the inhibitory effects of ethanol on platelet responses in the presence of PGI2 were very similar to its inhibitory effects in the absence of PGI2, when platelets were stimulated with lower concentrations of collagen or thrombin. Ethanol did not appear to exert its inhibitory effects by increasing cyclic AMP above basal levels and the additional inhibitory effects of ethanol in the presence of PGI2 did not appear to be brought about by further increases in platelet cyclic AMP levels.


1970 ◽  
Vol 23 (03) ◽  
pp. 601-620 ◽  
Author(s):  
Th. B Tschopp

SummaryAggregation of cat platelets in the citrated plasma is examined by means of Born’s absorptiometer. A marked tendency of the platelets of this species to spontaneous aggregation necessitated first of all the development of an improved technique of blood collection.A hypothesis according to which 5-HT is released from the platelets, explains the absence of oscillations on the base line of the absorptiometer, the absence of platelet swelling, when ADP is added, and the effect of stirring on the aggregation curves in cat PRP. The average volume of cat platelets amounts to 10.46 μ3 when directly fixed in the blood, when fixed from PRP to 12.17 μ3, when fixed from stirred PRP to 13.51 μ3.In low concentrations (0.3-2 μM) ADP produce reversible aggregation; in narrowly restricted, individually dissimilar mean concentrations irreversible aggregation in two phases and in high concentrations, irreversible aggregation in one phase. Like ADP serotonin produces 2 phase irreversible aggregation in concentrations of 3-10 μM, but unlike ADP, the aggregation velocity decreases again with high 5-HT concentrations (>100 μM). Adrenaline does not produce aggregation and it is likely that adenosine and adenosine monophosphate inhibit the aggregation by serotonin but not by ADP. Species differences in the aggregation of human, rabbit and cat platelets are discussed.


1971 ◽  
Vol 26 (01) ◽  
pp. 145-166
Author(s):  
E Deutsch ◽  
K Lechner ◽  
K Moser ◽  
L Stockinger

Summary1. The aniline derivative AN 162, Donau Pharmazie, Linz, Austria, has a dual action on the blood coagulation: an anticoagulant and an coagulation enhancing effect.2. The anticoagulant action may only be demonstrated with high concentrations (over 1 X 10”3 M related to plasma) preferentially in PPP. It is partially caused by an inhibition of the endogenous way of generation of the prothrombin converting principle. In addition it is suggested that it interferes with the fibrinogen-fibrin reaction in a manner not yet understood.3. The coagulant action is caused by a greater availability of platelet constituents at low concentrations of AN 162 (over 1 × 10-4 M) and by the induction of a release reaction at higher concentrations. The platelet factors 3 and 4, serotonin, adenine, and acid phosphatase are released.4. AN 162 inhibits platelet aggregation. This inhibition can be demonstrated by the PAT of Breddin and in the stirred aggregation test of Born. It is more effective to inhibit the collagen-induced and the second phase of the adrenaline-induced aggregation than the ADP induced one. The platelet retention (test of Hellem) is also reduced.5. The action of AN 162 on the platelets is caused by a damage of the platelet membrane which becomes permeabel for both, soluble platelet constitutents and granula.6. AN 162 interferes with the energy metabolism of the platelets. It causes a loss of ATP, and inhibits the key-enzymes of glycolysis, citric acid cycle, fatty acid oxydation and glutathione reduction.7. AN 162 inhibits the growth of fibroblasts without influence on mitosis.


1986 ◽  
Vol 55 (01) ◽  
pp. 136-142 ◽  
Author(s):  
K J Kao ◽  
David M Shaut ◽  
Paul A Klein

SummaryThrombospondin (TSP) is a major platelet secretory glycoprotein. Earlier studies of various investigators demonstrated that TSP is the endogenous platelet lectin and is responsible for the hemagglutinating activity expressed on formaldehyde-fixed thrombin-treated platelets. The direct effect of highly purified TSP on thrombin-induced platelet aggregation was studied. It was observed that aggregation of gel-filtered platelets induced by low concentrations of thrombin (≤0.05 U/ml) was progressively inhibited by increasing concentrations of exogenous TSP (≥60 μg/ml). However, inhibition of platelet aggregation by TSP was not observed when higher than 0.1 U/ml thrombin was used to activate platelets. To exclude the possibility that TSP inhibits platelet aggregation by affecting thrombin activation of platelets, three different approaches were utilized. First, by using a chromogenic substrate assay it was shown that TSP does not inhibit the proteolytic activity of thrombin. Second, thromboxane B2 synthesis by thrombin-stimulated platelets was not affected by exogenous TSP. Finally, electron microscopy of thrombin-induced platelet aggregates showed that platelets were activated by thrombin regardless of the presence or absence of exogenous TSP. The results indicate that high concentrations of exogenous TSP (≥60 μg/ml) directly interfere with interplatelet recognition among thrombin-activated platelets. This inhibitory effect of TSP can be neutralized by anti-TSP Fab. In addition, anti-TSP Fab directly inhibits platelet aggregation induced by a low (0.02 U/ml) but not by a high (0.1 U/ml) concentration of thrombin. In conclusion, our findings demonstrate that TSP is functionally important for platelet aggregation induced by low (≤0.05 U/ml) but not high (≥0.1 U/ml) concentrations of thrombin. High concentrations of exogenous TSP may univalently saturate all its platelet binding sites consequently interfering with TSP-crosslinking of thrombin-activated platelets.


1992 ◽  
Vol 26 (3-4) ◽  
pp. 907-914 ◽  
Author(s):  
A. Attal ◽  
M. Brigodiot ◽  
P. Camacho ◽  
J. Manem

The purpose of this study is to gain a better understanding of the biological phenomena involved in the production of hydrogen sulfide in urban wastewater (UWW) systems. It is found that the UWW itself naturally possesses the biomass needed to consume the sulfates. These heterotrophic sulfate-reducing bacteria populations, though immediately active in strict anaerobic conditions, are present only in very low concentrations in the UWW. A concentration of them was studied within the pressure pipes, in the form of deposits, and this justifies the high concentrations of sulfides measured in certain wastewater networks. There are two reasons why the ferrous sulfate used as a treatment in any wastewater networks should not cause the production of additional sulfides. Firstly, the sulfate consumption kinetics are always too slow, relative to the residence time of the water in the pipe, for all of the sulfates to be consumed anyway. Secondly, the amount of assimilable carbon, soluble carbon, and carbon from suspended solid (SS) hydrolysis is insufficient.


2017 ◽  
Vol 10 (1) ◽  
pp. 70-81 ◽  
Author(s):  
Muhammad Afzal Rizvi ◽  
Syed Abid Ali ◽  
Iqra Munir ◽  
Kousar Yasmeen ◽  
Rubina Abid ◽  
...  

Aim: Quinoa is a popular source of protein, minerals and alternative to traditional grains. The objective of this study is to introduce the Quinoa in the semi-arid zone of Sindh province of Pakistan. Method: A variety of NARC-9 from the agricultural Punjab province was cultivated and subjected to analyze the growth, morphological characters of the varieties obtained, saponin, protein and the elemental composition viz. Cd, Cu, Fe, K, Na, Pb, and Zn. Result: The result demonstrated the optimum growth and no disease were found in the experimental area. At least three major varieties of quinoa were obtained. Seed morphological data of these three quinoa cultivars were collected. The average saponin levels were quite reasonable. Overall proteins band pattern revealed very high polymorphism in quinoa cultivars and the results were also in good agreement with earlier studies. Conclusion: All quinoa cultivars of Madinat al-Hikmah showed high concentrations of albumin than globulin concentrations (i.e. 48-52% and 24-27%, respectively) as compared to control seeds from market that had similar concentrations of the two fractions i.e. 35.58% and 37.68%, respectively. Likewise, low concentrations of prolamin 14-16% and glutelin 11-12% compared to control seeds 13% rank our crop much better quality than the imported one in the market. The trend of elemental accumulation was followed as K >Na >Fe >Zn >Cu >Pb >Cd, while for comparison it was Na >K >Zn >Fe >Cu >Pb >Cd >Pb for wheat grown under similar conditions. Traditional grains together make a major contribution to the total nutritional element intake of the average Pakistani citizen through diet, not only because of large amounts consumed, but also in part by suitable levels of their proteins and elemental up take for good health. Thus the successful cultivation of quinoa in the semi-arid zone of Sindh will certainly prove beneficial.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 813
Author(s):  
Magdalena Świądro ◽  
Paweł Stelmaszczyk ◽  
Irena Lenart ◽  
Renata Wietecha-Posłuszny

The purpose of this study was to develop and validate a high-sensitivity methodology for identifying one of the most used drugs—ketamine. Ketamine is used medicinally to treat depression, alcoholism, and heroin addiction. Moreover, ketamine is the main ingredient used in so-called “date-rape” pills (DRP). This study presents a novel methodology for the simultaneous determination of ketamine based on the Dried Blood Spot (DBS) method, in combination with capillary electrophoresis coupled with a mass spectrometer (CE-TOF-MS). Then, 6-mm circles were punched out from DBS collected on Whatman DMPK-C paper and extracted using microwave-assisted extraction (MAE). The assay was linear in the range of 25–300 ng/mL. Values of limits of detection (LOD = 6.0 ng/mL) and quantification (LOQ = 19.8 ng/mL) were determined based on the signal to noise ratio. Intra-day precision at each determined concentration level was in the range of 6.1–11.1%, and inter-day between 7.9–13.1%. The obtained precision was under 15.0% (for medium and high concentrations) and lower than 20.0% (for low concentrations), which are in accordance with acceptance criteria. Therefore, the DBS/MAE/CE-TOF-MS method was successfully checked for analysis of ketamine in matrices other than blood, i.e., rose wine and orange juice. Moreover, it is possible to identify ketamine in the presence of flunitrazepam, which is the other most popular ingredient used in DRP. Based on this information, the selectivity of the proposed methodology for identifying ketamine in the presence of other components of rape pills was checked.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 820
Author(s):  
Robert Surma ◽  
Danuta Wojcieszyńska ◽  
Jagna Karcz ◽  
Urszula Guzik

Pseudomonas moorei KB4 is capable of degrading paracetamol, but high concentrations of this drug may cause an accumulation of toxic metabolites. It is known that immobilisation can have a protective effect on bacterial cells; therefore, the toxicity and degradation rate of paracetamol by the immobilised strain KB4 were assessed. Strain KB4 was immobilised on a plant sponge. A toxicity assessment was performed by measuring the concentration of ATP using the colony-forming unit (CFU) method. The kinetic parameters of paracetamol degradation were estimated using the Hill equation. Toxicity analysis showed a protective effect of the carrier at low concentrations of paracetamol. Moreover, a pronounced phenomenon of hormesis was observed in the immobilised systems. The obtained kinetic parameters and the course of the kinetic curves clearly indicate a decrease in the degradation activity of cells after their immobilisation. There was a delay in degradation in the systems with free cells without glucose and immobilised cells with glucose. However, it was demonstrated that the immobilised systems can degrade at least ten succeeding cycles of 20 mg/L paracetamol degradation. The obtained results indicate that the immobilised strain may become a useful tool in the process of paracetamol degradation.


Sign in / Sign up

Export Citation Format

Share Document