scholarly journals Krill Oil Alleviated Methamphetamine-Induced Memory Impairment via the MAPK Signaling Pathway and Dopaminergic Synapse Pathway

2021 ◽  
Vol 12 ◽  
Author(s):  
Qin Ru ◽  
Xiang Tian ◽  
Qi Xiong ◽  
Congyue Xu ◽  
Lin Chen ◽  
...  

Methamphetamine (METH) abuse exerts severe harmful effects in multiple organs, especially the brain, and can induce cognitive dysfunction and memory deficits in humans. Krill oil is rich in polyunsaturated fatty acids, while its effect on METH-induced cognitive impairment and mental disorders, and the underlying mechanism remain unknown. The aim of the present study was to investigate the protective effect of krill oil on METH-induced memory deficits and to explore the molecular mechanisms by using an integrated strategy of bioinformatics analysis and experimental verification. METH-exposed mice were treated with or without krill oil. Learning and memory functions were evaluated by the Morris water maze. The drug–component–target network was constructed in combination with network pharmacology. The predicted hub genes and pathways were validated by the Western blot technique. With krill oil treatment, memory impairment induced by METH was significantly improved. 210 predicted targets constituted the drug–compound–target network by network pharmacology analysis. 20 hub genes such as DRD2, MAPK3, CREB, BDNF, and caspase-3 were filtered out as the underlying mechanisms of krill oil on improving memory deficits induced by METH. The KEGG pathway and GO enrichment analyses showed that the MAPK signaling pathway, cAMP signaling pathway, and dopaminergic synapse pathway were involved in the neuroprotective effects of krill oil. In the hippocampus, DRD2, cleaved caspase-3, and γ-H2AX expression levels were significantly increased in the METH group but decreased in the krill oil–treated group. Meanwhile, krill oil enhanced the expressions of p-PKA, p-ERK1/2, and p-CREB. Our findings suggested that krill oil improved METH-induced memory deficits, and this effect may occur via the MAPK signaling pathway and dopaminergic synapse pathways. The combination of network pharmacology approaches with experimental validation may offer a useful tool to characterize the molecular mechanism of multicomponent complexes.

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhengde Zhao ◽  
Qining Fu ◽  
Liangzhu Hu ◽  
Yangdong Liu

Objective: The aim was to study the preliminary screening of the crucial genes in intimal hyperplasia in the venous segment of arteriovenous (AV) fistula and the underlying potential molecular mechanisms of intimal hyperplasia with bioinformatics analysis.Methods: The gene expression profile data (GSE39488) was analyzed to identify differentially expressed genes (DEGs). We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of DEGs. Gene set enrichment analysis (GSEA) was used to understand the potential activated signaling pathway. The protein–protein interaction (PPI) network was constructed with the STRING database and Cytoscape software. The Venn diagram between 10 hub genes and gene sets of 4 crucial signaling pathways was used to obtain core genes and relevant potential pathways. Furthermore, GSEAs were performed to understand their biological functions.Results: A total of 185 DEGs were screened in this study. The main biological function of the 111 upregulated genes in AV fistula primarily concentrated on cell proliferation and vascular remodeling, and the 74 downregulated genes in AV fistula were enriched in the biological function mainly relevant to inflammation. GSEA found four signaling pathways crucial for intimal hyperplasia, namely, MAPK, NOD-like, Cell Cycle, and TGF-beta signaling pathway. A total of 10 hub genes were identified, namely, EGR1, EGR2, EGR3, NR4A1, NR4A2, DUSP1, CXCR4, ATF3, CCL4, and CYR61. Particularly, DUSP1 and NR4A1 were identified as core genes that potentially participate in the MAPK signaling pathway. In AV fistula, the biological processes and pathways were primarily involved with MAPK signaling pathway and MAPK-mediated pathway with the high expression of DUSP1 and were highly relevant to cell proliferation and inflammation with the low expression of DUSP1. Besides, the biological processes and pathways in AV fistula with the high expression of NR4A1 similarly included the MAPK signaling pathway and the pathway mediated by MAPK signaling, and it was mainly involved with inflammation in AV fistula with the low expression of NR4A1.Conclusion: We screened four potential signaling pathways relevant to intimal hyperplasia and identified 10 hub genes, including two core genes (i.e., DUSP1 and NR4A1). Two core genes potentially participate in the MAPK signaling pathway and might serve as the therapeutic targets of intimal hyperplasia to prevent stenosis after AV fistula creation.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Zhencheng Xiong ◽  
Can Zheng ◽  
Yanan Chang ◽  
Kuankuan Liu ◽  
Li Shu ◽  
...  

Objective. The purpose of this work is to study the mechanism of action of Duhuo Jisheng Decoction (DHJSD) in the treatment of osteoporosis based on the methods of bioinformatics and network pharmacology. Methods. In this study, the active compounds of each medicinal ingredient of DHJSD and their corresponding targets were obtained from TCMSP database. Osteoporosis was treated as search query in GeneCards, MalaCards, DisGeNET, Therapeutic Target Database (TTD), Comparative Toxicogenomics Database (CTD), and OMIM databases to obtain disease-related genes. The overlapping targets of DHJSD and osteoporosis were identified, and then GO and KEGG enrichment analysis were performed. Cytoscape was employed to construct DHJSD-compounds-target genes-osteoporosis network and protein-protein interaction (PPI) network. CytoHubba was utilized to select the hub genes. The activities of binding of hub genes and key components were confirmed by molecular docking. Results. 174 active compounds and their 205 related potential targets were identified in DHJSD for the treatment of osteoporosis, including 10 hub genes (AKT1, ALB, IL6, MAPK3, VEGFA, JUN, CASP3, EGFR, MYC, and EGF). Pathway enrichment analysis of target proteins indicated that osteoclast differentiation, AGE-RAGE signaling pathway in diabetic complications, Wnt signaling pathway, MAPK signaling pathway, PI3K-Akt signaling pathway, JAK-STAT signaling pathway, calcium signaling pathway, and TNF signaling pathway were the specifically major pathways regulated by DHJSD against osteoporosis. Further verification based on molecular docking results showed that the small molecule compounds (Quercetin, Kaempferol, Beta-sitosterol, Beta-carotene, and Formononetin) contained in DHJSD generally have excellent binding affinity to the macromolecular target proteins encoded by the top 10 genes. Conclusion. This study reveals the characteristics of multi-component, multi-target, and multi-pathway of DHJSD against osteoporosis and provides novel insights for verifying the mechanism of DHJSD in the treatment of osteoporosis.


2020 ◽  
Author(s):  
Chongmei Tian ◽  
Jing-bai Chen ◽  
Xiang Chen ◽  
Dao-zong Xia

Abstract Background Diabetic nephropathy (DN), a unique complication of diabetes, could contribute to an increase in mortality. In this study, we predicted and proved the molecular pharmacological mechanism concerning the protective effects of Astragali Radix on DN. Methods The same potential target genes from Astragali Radix and DN were analyzed and constructed the protein interaction network. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment-related major targets and signal pathways were performed. The drug-ingredients-target-disease network was visually built using Cytoscape 3.6.1. The beneficial pharmacological activities of quercetin from Astragali Radix were confirmed by CCK-8 assay, determination of antioxidant parameters and Western blotting analysis. Results There are 12 bioactive components from Astragali Radix and 56 same targets between Astragali Radix and DN. The GO analysis results showed that the biological processes mainly included protein homodimerization activity. KEGG analysis indicate that the screened targets were most closely linked to the mitogen-activated protein kinase (MAPK) signaling pathway. The drug-ingredients-target-disease network results revealed that the therapeutic effects of Astragali Radix mainly included oxidative stress, inflammatory reaction and apoptosis. During the verification process, quercetin from Astragali Radix could attenuate cytotoxicity, enhance catalase (CAT) and superoxide dismutase (SOD) activities and suppress MAPK signaling pathway. Conclusions In the current study, network pharmacology with experimental analysis predicted and proved the therapeutic function of Astragali Radix by improving antioxidant capacity and suppressing MAPK signaling pathway, these investigations could provide a new perspective for further exploration of Astragali Radix on DN treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xing Li ◽  
Shizhang Wei ◽  
Xiao Ma ◽  
Haotian Li ◽  
Manyi Jing ◽  
...  

Aim. The aim of this study was to explore the antipyretic effect and potential mechanism of Huanglian Jiedu Decoction (HLJDD) on LPS-induced fever in rats. Materials and Methods. The fever rat model was established by LPS. Anal temperature of rats was measured every 1 hour after modeling. TNF-α, IL-6, PGE2, and cAMP in rat serum or hypothalamus tissue were detected by ELISA kit. In order to explore the potential active ingredients and mechanism of antipyretic effect of HLJDD, we predicted the underlying antipyretic mechanism by using network pharmacology and then verified its mechanism by Western Blotting. Results. The results showed that HLJDD can alleviate LPS-induced fever in rats. The expression levels of TNF-α, IL-6, PGE2, and cAMP in the treatment group were significantly lower than those in the model group. Western Blotting results showed that the protein expression of p-ERK, p-JNK, and p-P38 was significantly inhibited. Conclusion. The findings suggest that HLJDD has a good antipyretic effect on LPS-induced fever in rats, which may be closely related to the inhibition of MAPK signaling pathway.


2019 ◽  
Vol 158 (1) ◽  
pp. 17-24 ◽  
Author(s):  
Fei Xu ◽  
Yingchun Song ◽  
Ai Guo

Osteoarthritis (OA) is a degenerative disease characterized by progressive articular cartilage destruction and joint marginal osteophyte formation with different degrees of synovitis. Docosahexaenoic acid (DHA) is an unsaturated fatty acid with anti-inflammatory, antioxidant, and antiapoptotic functions. In this study, the human chondrosarcoma cell line SW1353 was cultured in vitro, and an OA cell model was constructed with inflammatory factor IL-1β stimulation. After cells were treated with DHA, cell apoptosis was measured. Western blot assay was used to detect protein expression of apoptosis-related factors (Bax, Bcl-2, and cleaved caspase-3) and mitogen-activated protein kinase (MAPK) signaling pathway family members, including extracellular signal-regulated kinase (ERK), c-JUN N-terminal kinase (JNK), and p38 MAPK. Our results show that IL-1β promotes the apoptosis of SW1353 cells, increases the expression of Bax and cleaved caspase-3, and activates the MAPK signaling pathway. In contrast, DHA inhibits the expression of IL-1β, inhibits IL-1β-induced cell apoptosis, and has a certain inhibitory effect on the activation of the MAPK signaling pathway. When the MAPK signaling pathway is inhibited by its inhibitors, the effects of DHA on SW1353 cells are weakened. Thus, DHA enhances the apoptosis of SW1353 cells through the MAPK signaling pathway.


2021 ◽  
Author(s):  
Ki Kwang Oh ◽  
Md. Adnan ◽  
Dong Ha Cho

Abstract Background: Ganoderma lucidum (GL) is known as a potent alleviator against chronic inflammatory disease like atherosclerosis (AS), but its critical bioactive compounds and their mechanisms against AS have not been unveiled. This research aimed to identify the key compounds(s) and mechanism(s) of GL against AS through network pharmacology.Methods: The compounds from GL were identified by gas chromatography-mass spectrum (GC-MS), and SwissADME screened their physicochemical properties. Then, the gene(s) associated with the screened compound(s) or AS related genes were identified by public databases, and we selected the overlapping genes using a Venn diagram. The networks between overlapping genes and compounds were visualized, constructed, and analyzed by RStudio. Finally, we performed molecular docking test (MDT) to identify key gene(s), compound(s) on AutoDockVina.Results: A total of 35 compounds in GL was detected via GC-MS, and 34 compounds (accepted by the Lipinski's rule) were selected as drug-like compounds (DLCs). A total of 34 compounds were connected to the number of 785 genes and 2,606 AS-related genes were identified by DisGeNET and Online Mendelian Inheritance in Man (OMIM). The final 98 overlapping genes were extracted between the compounds-genes network and AS-related genes. On Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, the number of 27 signaling pathways were sorted out, and a hub signaling pathway (MAPK signaling pathway), a core gene (PRKCA), and a key compound (Benzamide, 4-acetyl-N-(2,6-dimethylphenyl)) were selected among the 27 signaling pathways via MDT. Conclusion: Overall, we found that the identified 3 DLCs from GL have potent anti-inflammatory efficacy, improving AS by inactivating the MAPK signaling pathway.


2020 ◽  
Author(s):  
Ying Zhong ◽  
Youfa Fang

Abstract BackgroundCassiae Semen (CS) is one of the most well-known herbs used in the treatment of cataracts in China. However, the potential mechanisms of its anti-cataracts effects have not been fully explored.MethodThe active compounds of CS were obtained from TCMSP database, and their targets were retrieved from the TCMSP, STITCH and DrugBank databases. Cataracts related target genes were identified from the GeneCard, Malacard, and OMIM databases. GO and KEGG analysis were performed using DAVID online tools, and Cytoscape were used to construct compound-targets network and protein-protein interaction (PPI) networks, cluster analysis were carried out using MCODE plugin for Cytoscape.ResultsWe obtained 13 active compounds from CS and 105 targets in total to construct a compound-target network, which indicated that emodin, stigmastero, and rhein served as the main ingredients in CS. A total of 238 cataracts related targets were identified from public databases. PPI networks of compound targets and cataract-related targets were constructed and merged to obtained the central network, enrichment analysis showed 50 key targets in the central network enriched in several important signaling pathways, such as thyroid hormone signaling pathway, MAPK signaling pathway, PI3K-Akt signaling pathway. The top 4 genes with higher degree in the central network were TP53, HSP90, ESR1, EGFR, indicating their important roles in the treatment of cataracts.ConclusionsThe present study systematically revealed the multi-target mechanisms of CS on cataracts using network pharmacology approach, and provided indications for further mechanistic studies and also for the development of CS as a potential treatment for cataracts patients.


2020 ◽  
Vol 1 ◽  
pp. 3
Author(s):  
Wenpan Peng ◽  
Di Han ◽  
Yong Xu ◽  
Fanchao Feng ◽  
Zhichao Wang ◽  
...  

Objective: In the treatment of COVID-19, the application of Lianhua Qingwen Prescription has become growingly widespread, however, the mechanism of action is still unclear. To explore the material basis and mechanism of Lianhua Qingwen Prescription against SARS-CoV-2, to provide a reference for the treatment of COVID-19. Methods: Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), SwissTargetPrediction, and Similarity Ensemble Approach (SEA) database were used to search the chemical constituents and targets of Lianhua Qingwen Prescription. The targets of COVID-19 were screened by GeneCards, Therapeutic Target Database (TTD), and Comparative Toxicogenomics Database (CTD). Cytoscape software was used to construct a “drug-component-target” network diagram and the mechanism of action was predicted by enrichment analysis. Results: Two hundred and twenty four active components, 246 drug therapeutic targets, and 16,611 potential targets of Lianhua Qingwen Prescription were mined out. Moreover, 163 common targets were obtained, including PTGS2, IL6, CASP3, mapk1, EGFR, ACE2, etc. Thirty seven items were obtained by Gene Ontology (GO) enrichment analysis, mainly involving T-cell activation, virus receptor, and inflammatory reaction, etc. One hundred and forty items were obtained by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enriched analysis, including TNF signaling pathway, MAPK signaling pathway, and IL-17 signaling pathway. Conclusion: Compounds such as quercetin and kaempferol play an important role in anti-COVID-19 through the TNF signaling pathway and MAPK signaling pathway.


2021 ◽  
Author(s):  
lu wang ◽  
Wenxiang Zhu ◽  
Rui Sun ◽  
Jing Liu ◽  
Qihong Ma ◽  
...  

Abstract Background Pulmonary fibrosis (PF) is a devastating lung disease. The two drugs approved by the FDA, pirfenidone and nintedanib, can only delay the progression of the disease but cannot cure the disease. These drugs also present adverse effects. Wen-yu-jin (WYJ) obtained from steamed roots of Curcuma wenyujin showed a variety of pharmacological activities. In this study we investigated whether WYJ present anti-lung fibrosis effects. Methods Ultra-high pressure liquid chromatography combined with linear ion trap-orbital tandem mass spectrometry (UHPLC-LTQ-orbital trap) was used to identify chemical composition of WYJ. PF-related and WYJ-related targets were obtained from public databases. Network pharmacological was performed to acquire potential targets and major signaling pathways. The binding activity of composition with core targets was predicted by molecular docking. Based on the predicted results, the anti-lung fibrosis effect of WYJ was verified in vivo and in vitro experiments. Results 23 major compositions of WYJ were identified based on UHPLC-LTQ-Orbitrap. According to the results of network pharmacology, MAPK signaling pathway might play an important role in WYJ against lung fibrosis and STAT3 also could be the potential therapeutic targets. Molecular docking results indicated that most of the compositions have good binding activities with core targets. In vivo and in vitro experiments showed that WYJ alleviated process of fibrosis by inhibiting MAPK signaling pathway and the levels of phosphorylated STAT3 (p-STAT3). Conclusion According to the results of network pharmacology and molecular docking, in vivo and in vitro experiments further verified potential targets and molecular mechanism of WYJ against lung fibrosis. Our study provided a novel approach to explain the pharmacological basis of other herbs.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ying Wei ◽  
Sichen Ren ◽  
Ruilin Wang ◽  
Manyi Jing ◽  
Honghong Liu ◽  
...  

Background. Zuojin Pill (ZJP), a classic prescription, has the potential to prevent ulcerative colitis (UC). However, the active components and mechanisms of ZJP are still arcane. This study aimed to use a network pharmacology approach to find the bioactive compounds and potential action mechanisms of ZJP in the treatment of UC. Methods. Firstly, the components and putative targets of ZJP were collected based on herbal medicine target databases, and a network containing the interaction between the targets of ZJP and the potential therapeutic targets of UC was established. Then, topological parameters were calculated to identify the key targets in the network and, in turn, to import them into the David database to perform path enrichment analysis. Results. 14 potential therapeutic components of ZJP and 26 key targets were obtained. These targets were related to signal transduction, MAPK cascade, inflammatory response, immune response, and the apoptotic process of UC. Moreover, the PI3K-Akt signaling pathway, MAPK signaling pathway, toll-like receptor signaling pathway, and Prolactin signaling pathway were predicted to participate in ZJP treating UC. Among them, 14 active components of ZJP directly regulate these pathways. Conclusion. ZJP could alleviate UC through the predicted components and mechanisms. The 14 predicted active components of ZJP may mainly play a therapeutic role for UC through synergistic regulation of the PI3K-Akt signaling pathway and MAPK signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document