scholarly journals Thermodynamic and Mechanical Properties of DMPC/Cholesterol Mixed Monolayers at Physiological Conditions

2021 ◽  
Vol 9 ◽  
Author(s):  
Alan Bañuelos-Frias ◽  
Victor Manuel Castañeda-Montiel ◽  
Edgar Rogelio Alvizo-Paez ◽  
Emmanuel Antonio Vazquez-Martinez ◽  
Eduardo Gomez ◽  
...  

One of the main known effects of cholesterol is to rigidify the cell membrane throughout the so-called condensing effect. Although many studies have been done in mixtures of cholesterol with different membrane lipids, there are not many studies in a wide concentration range of cholesterol or at physiological conditions. In this work, we studied mixtures of DMPC/Cholesterol monolayers to determine the effect of cholesterol, from very low to physiological concentrations and two pHs. We use a Langmuir balance and Brewster angle microscopy to study their thermodynamic behavior at 37.0 ± 0.1°C at the air/solution interface. From the analysis of the (π−A) isotherms, we determined the excess area and the compressibility elastic modulus to determine the monolayers mechanical properties. Surprisingly, we found three main effects of cholesterol: The first one is a fluidization effect of the monolayer at all cholesterol concentrations. The second effect is the so-called condensing effect that appears due to the non-ideality of the mixture. The third effect is a stiffness of the monolayer as the cholesterol concentration increases. These effects are stronger in pure water, pH ≈ 6.6, than on buffer at physiological pH = 7.4. We also found that all mixtures are thermodynamically stable at all concentrations at a surface pressure of 30.1 ± 1.6 and 27.4 ± 3.2 mN/m in pure water and buffer, respectively. Furthermore, we compared this stability with a fatty acid monolayer that shows a much lower surface pressure equilibrium value that DMPC or its mixtures with cholesterol, indicating a possibly reason why double chain lipids are better than single chain lipids to made up the cell membrane.

2020 ◽  
Vol 49 (7) ◽  
pp. 533-547 ◽  
Author(s):  
Martin Rabe ◽  
Andreas Kerth ◽  
Alfred Blume ◽  
Patrick Garidel

AbstractTween (polysorbate) 20 and 80 are surfactants used for the development of parenteral protein drugs, due to their beneficial safety profile and stabilisation properties. To elucidate the mechanism by which Tween 20 and 80 stabilise proteins in aqueous solutions, either by a “direct” protein to surfactant interaction and/or by an interaction with the protein film at the air–water interface, we used spectroscopic (Infrared Reflection Absorption Spectroscopy, IRRAS) and microscopic techniques (Brewster Angle Microscopy, BAM) in combination with surface pressure measurements. To this end, the impact of both types of Tweens with regard to the displacement of the protein from the air–water interface was studied. As a model protein, human serum albumin (HSA) was used. The results for the displacement of the adsorbed HSA films by Tweens 20 and 80 can partially be understood on the basis of an orogenic displacement mechanism, which depends on the critical surface pressure of the adsorbed protein film. With increasing concentration of Tween in the sub-phase, BAM images showed the formation of different domain morphologies. IRRA-spectra supported the finding that at high protein concentration in the sub-phase, the protein film could not be completely displaced by the surfactants. Comparing the impact of both surfactants, we found that Tween 20 adsorbed faster to the protein film than Tween 80. The adsorption kinetics of both Tweens and the speed of protein displacement increased with rising surfactant concentration. Tween 80 reached significant lower surface pressures than Tween 20, which led to an incomplete displacement of the observed HSA film.


1993 ◽  
Vol 70 (05) ◽  
pp. 867-872 ◽  
Author(s):  
Dingeman C Rijken ◽  
Gerard A W de Munk ◽  
Annie F H Jie

SummaryIn order to define the possible effects of heparin on the fibrinolytic system under physiological conditions, we studied the interactions of this drug with plasminogen and its activators at various ionic strengths. As reported in recent literature, heparin stimulated the activation of Lys-plasminogen by high molecular weight (HMW) and low molecular weight (LMW) two-chain urokinase-type plasminogen activator (u-PA) and two-chain tissue-type plasminogen activator (t-PA) 10- to 17-fold. Our results showed, however, that this stimulation only occurred at low ionic strength and was negligible at a physiological salt concentration. Direct binding studies were performed using heparin-agarose column chromatography. The interaction between heparin and Lys-plasminogen appeared to be salt sensitive, which explains at least in part why heparin did not stimulate plasminogen activation at 0.15 M NaCl. The binding of u-PA and t-PA to heparinagarose was less salt sensitive. Results were consistent with heparin binding sites on both LMW u-PA and the amino-terminal part of HMW u-PA. Single-chain t-PA bound more avidly than two-chain t-PA. The interactions between heparin and plasminogen activators can occur under physiological conditions and may modulate the fibrinolytic system.


2003 ◽  
Vol 771 ◽  
Author(s):  
G. Panzera ◽  
S. Conoci ◽  
S. Coffa ◽  
B. Pignataro ◽  
S. Sortino ◽  
...  

AbstractThin films (1-24 layers) of bis-zinc ethane-bridged porphyrin dimer (1) have been transferred on solid surfaces, by the Langmuir- Schäfer (LS) horizontal method. The related surface pressurearea isotherm curve shows that in dependence of the film pressure different condensed phases may occur in the monolayer. The inspection of the monolayer by Brewster Angle Microscopy (BAM) reveals the presence of peculiar networks whose structural features seemingly change upon film compression. On the other hand, the Scanning Force Microscopy (SFM) analysis performed on LS films shows fractal networks constituted by nanoscopic supramolecular aggregates, whose shape and size depend again on the LS deposition surface pressure. Finally, also UV-vis spectroscopy measurements indicates that the absorption is almost linearly related to the film thickness that is directly connected to the surface pressure.


2021 ◽  
Vol 22 (13) ◽  
pp. 6840
Author(s):  
Natalia Czaplicka ◽  
Szymon Mania ◽  
Donata Konopacka-Łyskawa

The literature indicates the existence of a relationship between rhamnolipids and bacterial biofilm, as well as the ability of selected bacteria to produce rhamnolipids and alginate. However, the influence of biosurfactant molecules on the mechanical properties of biofilms are still not fully understood. The aim of this research is to determine the effect of rhamnolipids concentration, CaCl2 concentration, and ionic cross-linking time on the mechanical properties of alginate hydrogels using a Box–Behnken design. The mechanical properties of cross-linked alginate hydrogels were characterized using a universal testing machine. It was assumed that the addition of rhamnolipids mainly affects the compression load, and the value of this parameter is lower for hydrogels produced with biosurfactant concentration below CMC than for hydrogels obtained in pure water. In contrast, the addition of rhamnolipids in an amount exceeding CMC causes an increase in compression load. In bacterial biofilms, the presence of rhamnolipid molecules does not exceed the CMC value, which may confirm the influence of this biosurfactant on the formation of the biofilm structure. Moreover, rhamnolipids interact with the hydrophobic part of the alginate copolymer chains, and then the hydrophilic groups of adsorbed biosurfactant molecules create additional calcium ion trapping sites.


2020 ◽  
Vol 38 (3) ◽  
pp. 273-286 ◽  
Author(s):  
Cristina Garcia-Cabezon ◽  
Celia Garcia-Hernandez ◽  
Maria L. Rodriguez-Mendez ◽  
Gemma Herranz ◽  
Fernando Martin-Pedrosa

AbstractMicrostructural changes that result in relevant improvements in mechanical properties and electrochemical behavior can be induced using different sintering conditions of ASTM F75 cobalt alloys during their processing using powder metallurgy technique. It has been observed that the increase in carbon and nitrogen content improves corrosion resistance and mechanical properties as long as the precipitation of carbides and nitrides is avoided, thanks to the use of rapid cooling in water after the sintering stage. In addition, the reduction of the particle size of the powder improves hardness and resistance to corrosion in both acid medium with chlorides and phosphate-buffered medium that simulates the physiological conditions for its use as a biomaterial. These results lead to increased knowledge of the role of carbon and nitrogen content in the behavior displayed by the different alloys studied.


2012 ◽  
Vol 9 (4) ◽  
pp. 285-292 ◽  
Author(s):  
Seyed Mohammad Nabavi ◽  
Seyed Fazel Nabavi ◽  
William N. Setzer ◽  
Heshmatollah Alinezhad ◽  
Mahboobeh Zare ◽  
...  

1964 ◽  
Vol 4 (2) ◽  
pp. 115-135 ◽  
Author(s):  
R.P. Rand ◽  
A.C. Burton

2020 ◽  
Vol 15 (3) ◽  
pp. 44-49
Author(s):  
Ibiyemi A. Idowu ◽  
Olutosin O. Ilori

The study examined the effect of fillers on the mechanical properties of the recycled low density polyethylene composites under weathered condition with a view of managing the generation and disposal of plastic wastes. Discarded pure water sachets and fillers (glass and talc) were sourced and recycled. Recycled low density polyethylene (RLDPE) and preparation of RLDPE/glass, RLDPE/talc and RLDPE/glass/talc composites were carried out using a furnace at compositions of 0 – 40% in steps of 10% by weight. The mixtures were poured into hand-laid mould. The samples produced were exposed to sunlight for eight (8) weeks and their mechanical properties were studied. The results of mechanical tests revealed that tensile strength decreased with increasing filler loading while impact strength and hardness property increased marginally and considerably with increasing filler loading for all the composites respectively. The study concluded that glass and talc were able to reinforce recycled low density polyethylene under weathered condition. Keywords: Recycled Low Density Polyethylene (RLDPE); Fillers; Glass, Talc; Weathering condition; Sunlight; and Mechanical properties; Tensile strength, Impact and hardness


1993 ◽  
Vol 104 (4) ◽  
pp. 1251-1262
Author(s):  
M. Deiner ◽  
S.L. Tamm ◽  
S. Tamm

Cilia with a distal membrane expansion enclosing a coiled end of the axoneme (paddle cilia or discocilia) have been commonly reported in marine invertebrates. We recently showed that paddle cilia in molluscan veligers are artifacts of non-physiological conditions. Here we investigated the possible mechanisms of formation of paddle cilia under hypotonic conditions; particularly, whether a helical conformational change of doublet microtubules induced by Ca or proton flux is responsible. Typical paddle cilia are induced by hypotonic Ca-free solutions at normal or low pH, showing that axonemal coiling does not require Ca influx or proton efflux. In addition, Triton-demembranated straight axonemes do not coil in high Ca solutions. Most decisively, complete removal of paddle ciliary membranes with detergents, but not mere permeabilization, causes immediate uncoiling and straightening of the axonemes to approximately their original length before hypotonic treatment. These findings and other data show that axonemal coiling in paddles is due to membrane tensile stress acting on an elastic axoneme. Light and electron microscopy of paddles show that axonemes coil uniformly toward the direction of the effective stroke (doublets nos 5–6), even when beating is inhibited by sodium azide or glutaraldehyde before hypotonic treatment. This indicates that axonemes possess an intrinsic asymmetry of stiffness within the beat plane, independent of active microtubule sliding. Paddle cilia thus reveal important mechanical properties of ciliary axonemes and membranes that should be useful for understanding ciliary function.


2021 ◽  
pp. 0021955X2110626
Author(s):  
Tae Seok Kim ◽  
Yeongbeom Lee ◽  
Chul Hyun Hwang ◽  
Kwang Ho Song ◽  
Woo Nyon Kim

The effect of perfluoroalkane (PFA) on the morphology, thermal conductivity, mechanical properties and thermal stability of rigid polyurethane (PU) foams was investigated under ambient and cryogenic conditions. The PU foams were blown with hydrofluorolefin. Morphological results showed that the minimum cell size (153 μm) was observed when the PFA content was 1.0 part per hundred polyols by weight (php). This was due to the lower surface tension of the mixed polyol solution when the PFA content was 1.0 php. The thermal conductivity of PU foams measured under ambient (0.0215 W/mK) and cryogenic (0.0179 W/mK at −100°C) conditions reached a minimum when the PFA content was 1.0 php. The low value of thermal conductivity was a result of the small cell size of the foams. The above results suggest that PFA acted as a nucleating agent to enhanced the thermal insulation properties of PU foams. The compressive and shear strengths of the PU foams did not appreciably change with PFA content at either −170°C or 20°C. However, it shows that the mechanical strengths at −170°C and 20°C for the PU foams meet the specification. Coefficient of thermal expansion, and thermal shock tests of the PU foams showed enough thermal stability for the LNG carrier’s operation temperature. Therefore, it is suggested that the PU foams blown by HFO with the PFA addition can be used as a thermal insulation material for a conventional LNG carrier.


Sign in / Sign up

Export Citation Format

Share Document