scholarly journals Photodynamic Therapy Using Cerenkov and Radioluminescence Light

2021 ◽  
Vol 9 ◽  
Author(s):  
Antonello E. Spinelli ◽  
Federico Boschi

In this short review the potential use of Cerenkov radiation and radioluminescence as internal sources for Photodynamic therapy (PDT) is discussed. PDT has been developed over the course of more than 100 years and is based on the induced photo conversion of a drug called photosensitizer (PS) that triggers the production of cytotoxic reactive oxygen species (ROS) leading to the killing of the cells. In order to overcome the problem of light penetration in the tissues, different solutions were proposed in the past. The use of radioisotopes like: 18F, 64Cu, 90Y, 177Lu as internal light sources increase the light fluence at the PS compared to an external source, resulting in a larger cytotoxic effect.

2021 ◽  
Vol 28 ◽  
Author(s):  
Menghua Xiang ◽  
Quanming Zhou ◽  
Zihan Shi ◽  
Xuan Wang ◽  
Mengchu Li ◽  
...  

: Photodynamic Therapy (PDT), as a clinically approved modality for the treatment of various disordered diseases including cancer, has received great advances in recent years. By preferentially accumulating non-toxic Photosensitizers (PSs) in the pathological area, and in situ generation of cytotoxic reactive oxygen species (ROS) under local irradiation by a light source with appropriate wavelength, PDT works in a dual-selective manner. Over the past decades, numerous studies and reviews on PDT mainly focused on activable PSs and the newly emerging PSs in PDT. However, to the best of our knowledge, there are few articles on the systematic introduction of light sources and limited reports about targeted strategies in PDT. This review comprehensively summarizes various light sources applied in PDT together with typical enhanced targeting strategies, and outlines their advantages and disadvantages, respectively. The clinical applications and future perspectives in light sources are also partly presented and discussed.


Author(s):  
M. Saad Khan ◽  
Jangsun Hwang ◽  
Kyungwoo Lee ◽  
Yonghyun Choi ◽  
Kyobum Kim ◽  
...  

Microbubbles and nanobubbles can be prepared using various shells, such as phospholipids, polymers, proteins, and surfactants. They are echogenic and can be used as contrast agents for ultrasonic and photoacoustic imaging. These bubbles can be engineered in various sizes as vehicles for gas and drug delivery applications with novel properties and flexible structures. Hypoxic areas in tumors develop owing to an imbalance of oxygen supply and demand. In tumors, hypoxic regions have shown more resistance to chemotherapy, radiotherapy, and photodynamic therapies. The efficacy of photodynamic therapy depends on the availability of oxygen in the tumor to generate reactive oxygen species. Micro/nanobubbles have been shown to reverse hypoxic conditions and increase tissue oxygen levels. This review summarizes the synthesis methods and shell compositions of micro/nanobubbles and methods deployed for oxygen delivery. In addition, the shortcomings and prospects of engineering micro/nanobubbles are discussed for their potential use in photodynamic therapy.


2008 ◽  
Vol 61 (10) ◽  
pp. 741 ◽  
Author(s):  
Leonardo Marmo Moreira ◽  
Fábio Vieira dos Santos ◽  
Juliana Pereira Lyon ◽  
Maira Maftoum-Costa ◽  
Cristina Pacheco-Soares ◽  
...  

The present work is focussed on the principles of photodynamic therapy (PDT), emphasizing the photochemical mechanisms of reactive oxygen species formation and the consequent biochemical processes generated by the action of reactive oxygen species on various biological macromolecules and organelles. This paper also presents some of the most used photosensitizers, including Photofrin, and the new prototypes of photosensitizers, analysing their physicochemical and spectroscopic properties. At this point, the review discusses the therapeutic window of absorption of specific wavelengths involving first- and second-generation photosensitizers, as well as the principal light sources used in PDT. Additionally, the aggregation process, which consists in a phenomenon common to several photosensitizers, is studied. J-aggregates and H-aggregates are discussed, along with their spectroscopic effects. Most photosensitizers have a significant hydrophobic character; thus, the study of the types of aggregation in aqueous solvent is very relevant. Important aspects of the coordination chemistry of metalloporphyrins and metallophthalocyanines used as photosensitizers are also discussed. The state-of-the-art in PDT is evaluated, discussing recent articles in this area. Furthermore, macrocyclic photosensitizers, such as porphyrins and phthalocyanines, are specifically described. The present review is an important contribution, because PDT is one of the most auspicious advances in the therapy against cancer and other non-malignant diseases.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3132
Author(s):  
Thais P. Pivetta ◽  
Caroline E. A. Botteon ◽  
Paulo A. Ribeiro ◽  
Priscyla D. Marcato ◽  
Maria Raposo

Photodynamic therapy (PDT) and photothermal therapy (PTT) are photo-mediated treatments with different mechanisms of action that can be addressed for cancer treatment. Both phototherapies are highly successful and barely or non-invasive types of treatment that have gained attention in the past few years. The death of cancer cells because of the application of these therapies is caused by the formation of reactive oxygen species, that leads to oxidative stress for the case of photodynamic therapy and the generation of heat for the case of photothermal therapies. The advancement of nanotechnology allowed significant benefit to these therapies using nanoparticles, allowing both tuning of the process and an increase of effectiveness. The encapsulation of drugs, development of the most different organic and inorganic nanoparticles as well as the possibility of surfaces’ functionalization are some strategies used to combine phototherapy and nanotechnology, with the aim of an effective treatment with minimal side effects. This article presents an overview on the use of nanostructures in association with phototherapy, in the view of cancer treatment.


2020 ◽  
Vol 6 (37) ◽  
pp. eaba3009
Author(s):  
Eun Hye Kim ◽  
Sangwoo Park ◽  
Yun Kyu Kim ◽  
Minwoo Moon ◽  
Jeongwon Park ◽  
...  

Despite the potential of photodynamic therapy (PDT), its comprehensive use in cancer treatment has not been achieved because of the nondegradable risks of photosensitizing drugs and limits of light penetration and instrumentation. Here, we present bioluminescence (BL)–induced proteinaceous PDT (BLiP-PDT), through the combination of luciferase and a reactive oxygen species (ROS)–generating protein (Luc-RGP), which is self-luminescent and degradable. After exposure to coelenterazine-h as a substrate for luciferase without external light irradiation, Luc-RGP fused with a small lead peptide–induced breast cancer cell death through the generation of BL-sensitive ROS in the plasma membrane. Even with extremely low light energy, BLiP-PDT exhibited targeted effects in primary breast cancer cells from patients and in in vivo tumor xenograft mouse models. These findings suggest that BLiP-PDT is immediately useful as a promising theranostic approach against various cancers.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 260
Author(s):  
Yuriy Gerasymchuk ◽  
Wojciech Kałas ◽  
Jacek Arkowski ◽  
Łukasz Marciniak ◽  
Dariusz Hreniak ◽  
...  

A new conjugate of gallato zirconium (IV) phthalocyanine complexes (PcZrGallate) has been obtained from alkilamino-modified SiO2 nanocarriers (SiO2-(CH2)3-NH2NPs), which may potentially be used in photodynamic therapy of atherosclerosis. Its structure and morphology have been investigated. The photochemical properties of the composite material has been characterized. in saline environments when exposed to different light sources Reactive oxygen species (ROS) generation in DMSO suspension under near IR irradiation was evaluated. The PcZrGallate-SiO2 conjugate has been found to induce a cytotoxic effect on macrophages after IR irradiation, which did not correspond to ROS production. It was found that SiO2 as a carrier helps the photosensitizer to enter into the macrophages, a type of cells that play a key role in the development of atheroma. These properties of the novel conjugate may make it useful in the photodynamic therapy of coronary artery disease.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 268
Author(s):  
Juechen Ni ◽  
Yijia Wang ◽  
Haoke Zhang ◽  
Jing Zhi Sun ◽  
Ben Zhong Tang

Luminogens with aggregation-induced emission (AIEgens) have been widely applied in the field of photodynamic therapy. Among them, aggregation-induced emission photosensitizers (AIE–PSs) are demonstrated with high capability in fluorescence and photoacoustic bimodal imaging, as well as in fluorescence imaging-guided photodynamic therapy. They not only improve diagnosis accuracy but also provide an efficient theranostic platform to accelerate preclinical translation as well. In this short review, we divide AIE–PSs into three categories. Through the analysis of such classification and construction methods, it will be helpful for scientists to further develop various types of AIE–PSs with superior performance.


Author(s):  
Z. Liliental-Weber ◽  
C. Nelson ◽  
R. Ludeke ◽  
R. Gronsky ◽  
J. Washburn

The properties of metal/semiconductor interfaces have received considerable attention over the past few years, and the Al/GaAs system is of special interest because of its potential use in high-speed logic integrated optics, and microwave applications. For such materials a detailed knowledge of the geometric and electronic structure of the interface is fundamental to an understanding of the electrical properties of the contact. It is well known that the properties of Schottky contacts are established within a few atomic layers of the deposited metal. Therefore surface contamination can play a significant role. A method for fabricating contamination-free interfaces is absolutely necessary for reproducible properties, and molecularbeam epitaxy (MBE) offers such advantages for in-situ metal deposition under UHV conditions


2019 ◽  
Vol 1 (7) ◽  
pp. 19-23
Author(s):  
S. I. Surkichin ◽  
N. V. Gryazeva ◽  
L. S. Kholupova ◽  
N. V. Bochkova

The article provides an overview of the use of photodynamic therapy for photodamage of the skin. The causes, pathogenesis and clinical manifestations of skin photodamage are considered. The definition, principle of action of photodynamic therapy, including the sources of light used, the classification of photosensitizers and their main characteristics are given. Analyzed studies that show the effectiveness and comparative evaluation in the selection of various light sources and photosensitizing agents for photodynamic therapy in patients with clinical manifestations of photodamage.


Author(s):  
Gabriele Stephan ◽  
Niklas Ravn-Boess ◽  
Dimitris G Placantonakis

Abstract Members of the adhesion family of G protein-coupled receptors (GPCRs) have received attention for their roles in health and disease, including cancer. Over the past decade, several members of the family have been implicated in the pathogenesis of glioblastoma. Here, we discuss the basic biology of adhesion GPCRs and review in detail specific members of the receptor family with known functions in glioblastoma. Finally, we discuss the potential use of adhesion GPCRs as novel treatment targets in neuro-oncology.


Sign in / Sign up

Export Citation Format

Share Document