scholarly journals Non-Thermal Plasma as a Novel Strategy for Treating or Preventing Viral Infection and Associated Disease

2021 ◽  
Vol 9 ◽  
Author(s):  
Hager Mohamed ◽  
Gaurav Nayak ◽  
Nicole Rendine ◽  
Brian Wigdahl ◽  
Fred C. Krebs ◽  
...  

Pathogenic viruses cause many human, animal, and plant diseases that are associated with substantial morbidity, mortality and socio-economic impact. Although effective strategies for combatting virus transmission and associated disease are available, global outbreaks of viral pathogens such as the virus responsible for the COVID-19 pandemic demonstrate that there is still a critical need for new approaches that can be used to interrupt the chain of viral infection and mitigate virus-associated pathogenesis. Recent studies point to non-thermal plasma (NTP), a partly ionized gas comprised of a complex mixture of reactive oxygen and nitrogen species along with physical effectors, as the potential foundation for new antiviral approaches. A more thorough understanding of the antiviral properties and safety of NTP has stimulated explorations of NTP as the basis for treatments of viral diseases. The recently described immunomodulatory properties of NTP are also being evaluated for potential use in immunotherapies of viral diseases as well as in antiviral vaccination strategies. In this review, we present the current state-of-the-art in addition to compelling arguments that NTP merits further exploration for use in the prevention and management of viral infections and associated diseases.

2020 ◽  
Vol 24 (1) ◽  
pp. 98
Author(s):  
Tri Retno Widyastuti ◽  
Sri Sulandari ◽  
Sedyo Hartono ◽  
Triwidodo Arwiyanto

Grafting methods on tomato have been done to reduce the infection rate of various pathogens. Begomovirus and Crinivirus are important viruses in tomato plants. The research aimed to determine the resistance response of tomato plants to viral infection, and tomato production. Field research was conducted in Harjobinangun, Pakem, Sleman, Yogyakarta in the endemic area of the viral diseases transmitted by Bemisia tabaci. This experiment used a Completely Randomized Design non-factorial with “Servo” as scion and “Amelia”, “H-7996”, “Mawar” as rootstock. The disease development, presence of viral diseases, and tomato yields were observed. PCR detection using Krusty & Hommr primer successfully amplified Begomovirus DNA bands with an approximate size of 580 bp in tomato plant with interveinal chlorosis, curling, thick, rigid, and stunt symptoms. Chlorotic spots and yellowing symptoms successfully amplified using ToCV-CF/ToCV-CR specific primer for the amplification of Tomato chlorosis virus with DNA band approximately size of 360 bp, whereas using TICV-CF/TICV-CR specific primer could not amplify the virus cDNA. The leaves roll upward with purple interveinal symptoms that were not infected by both viruses. Both viral infections affected the quality of the fruit which indicated by a higher number of abnormal fruits. “Servo” grafted onto “Amelia” and non-grafted Servo were tolerant to viral infection, “Servo” grafted onto “H-7996” or to “Mawar variety were susceptible to viral infection, self-grafted Servo were very susceptible to viral infection. 


2020 ◽  
Vol 4 (1) ◽  
pp. 020-027
Author(s):  
Nikhra Vinod

The global virome: The viruses have a global distribution, phylogenetic diversity and host specificity. They are obligate intracellular parasites with single- or double-stranded DNA or RNA genomes, and afflict bacteria, plants, animals and human population. The viral infection begins when surface proteins bind to receptor proteins on the host cell surface, followed by internalisation, replication and lysis. Further, trans-species interactions of viruses with bacteria, small eukaryotes and host are associated with various zoonotic viral diseases and disease progression. Virome interface and transmission: The cross-species transmission from their natural reservoir, usually mammalian or avian, hosts to infect human-being is a rare probability, but occurs leading to the zoonotic human viral infection. The factors like increased human settlements and encroachments, expanded travel and trade networks, altered wildlife and livestock practices, modernised and mass-farming practices, compromised ecosystems and habitat destruction, and global climate change have impact on the interactions between virome and its hosts and other species and act as drivers of trans-species viral spill-over and human transmission. Zoonotic viral diseases and epidemics: The zoonotic viruses have caused various deadly pandemics in human history. They can be further characterized as either newly emerging or re-emerging infectious diseases, caused by pathogens that historically have infected the same host species, but continue to appear in new locations or in drug-resistant forms, or reappear after apparent control or elimination. The prevalence of zoonoses underlines importance of the animal–human–ecosystem interface in disease transmission. The present COVID-19 infection has certain distinct features which suppress the host immune response and promote the disease potential. Treatment for epidemics like covid-19: It appears that certain nutraceuticals may provide relief in clinical symptoms to patients infected with encapsulated RNA viruses such as influenza and coronavirus. These nutraceuticals appear to reduce the inflammation in the lungs and help to boost type 1 interferon response to these viral infections. The human intestinal microbiota acting in tandem with the host’s defence and immune system, is vital for homeostasis and preservation of health. The integrity and balanced activity of the gut microbes is responsible for the protection from disease states including viral infections. Certain probiotics may help in improving the sensitivity and effectivity of immune system against viral infections. Currently, antiviral therapy is available only for a limited number of zoonotic viral infections. Because viruses are intracellular parasites, antiviral drugs are not able to deactivate or destroy the virus but can reduce the viral load by inhibiting replication and facilitating the host’s innate immune mechanisms to neutralize the virus. Conclusion: Lessons from recent viral epidemics - Considering that certain nutraceuticals have demonstrated antiviral effects in both clinical and animal studies, further studies are required to establish their therapeutic efficacy. The components of nutraceuticals such as luteolin, apigenin, quercetin and chlorogenic acid may be useful for developing a combo-therapy. The use of probiotics to enhance immunity and immune response against viral infections is a novel possibility. The available antiviral therapy is inefficient in deactivating or destroying the infecting viruses, may help in reducing the viral load by inhibiting replication. The novel efficient antiviral agents are being explored.


2019 ◽  
pp. 65-72
Author(s):  
L. Yu. Poslova

The article presents generalized clinical and epidemiological features of viral infections in children's noninfectious multidisciplinary hospital based on the results of a multi-year comprehensive study. The study was conducted for 12 years (2006–2017), included 16615 patients, including those diagnosed with «Acute respiratory viral infection» – 6104 patients, with a diagnosis of «Acute intestinal viral infection» – 1934 patients. A total of 193017 microbiological studies were conducted, including molecular genetic studies. It was found that the overall incidence of viral infections in children's non-infectious multidisciplinary hospital was 21.1 [95% CI 20.3-21.9] per 1000 hospitalized patients (according to long-term average data). The main nosological groups of viral infections were respiratory infections, enteric infections, intrauterine infections and parenteral viral hepatitis. Viral infections in in children's non-infectious multidisciplinary hospital were characterized by the following clinical and epidemiological features: high incidence; age group at risk – children under 3 years; features of clinical picture with «masks» of noncommunicable pathology; presence of combined infections; high level of virus transmission; high frequency of infections, brought into the hospital; prevalence of healthcare-associated infections in the general structure of morbidity with outbreak and involvement in the epidemic process of children and adults; uneven distribution of morbidity and carriers in departments; presence of nosocomial circulation of viruses.


Epigenomics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 353-370 ◽  
Author(s):  
Javid Sadri Nahand ◽  
Maryam Mahjoubin-Tehran ◽  
Mohsen Moghoofei ◽  
Mohammad Hossein Pourhanifeh ◽  
Hamid Reza Mirzaei ◽  
...  

Exosomes are secreted nanovesicles that are able to transfer their cargo (such as miRNAs) between cells. To determine to what extent exosomes and exosomal miRNAs are involved in the pathogenesis, progression and diagnosis of viral infections. The scientific literature (PubMed and Google Scholar) was searched from 1970 to 2019. The complex biogenesis of exosomes and miRNAs was reviewed. Exosomes contain both viral and host miRNAs that can be used as diagnostic biomarkers for viral diseases. Viral proteins can alter miRNAs, and conversely miRNAs can alter the host response to viral infections in a positive or negative manner. It is expected that exosomal miRNAs will be increasingly used for diagnosis, monitoring and even treatment of viral infections.


Author(s):  
A. S. Oksanich ◽  
A. A. Nikonova ◽  
V. V. Zverev

More than 60 recombinant monoclonal antibodies (mAbs) have been developed for the treatment of various diseases in the last 20 years. About 30 antibody preparations are approved for use in therapy, including large group of drugs against cancer. In addition, mAbs are used in transplantation, for the treatment of cardiovascular, autoimmune and, in rare cases, infectious diseases. Despite the fact that tens millions of people die every year from viral diseases, only one drug based on recombinant antibodies for the prevention of RSV in children is currently allowed. This review focuses on approaches to generate therapeutic mAbs to fight viral infection, examples of mAb therapies for viral infections, and the challenges of developing such therapies.


2010 ◽  
Vol 25 (3) ◽  
pp. 201-211
Author(s):  
Aleksandra Bulajic ◽  
Ana Vucurovic ◽  
Ivana Stankovic ◽  
Danijela Ristic ◽  
Janos Berenji ◽  
...  

As there is a growing frequency of viral plant diseases in epidemic proportions, the possibilities for successful control are constantly being explored. Despite the fact that integral and simultaneous employment of numerous control measures may contribute to the decreasing amount of yield losses, especially concerning non-persistently aphid-transmitted viruses, these measures are often not efficient enough. Research into the basis of resistance to viral infection and principles of its inheritance, introduction of sources of resistance in susceptible genotypes, by conventional or genetic manipulations, are very intensive for cucurbit crops, especially pumpkins. Pumpkin crops are being endangered by a great number of different viruses, among which the Zucchini yellow mosaic virus, (ZYMV), Watermelon mosaic virus (WMV) and Cucumber mosaic virus (CMV) are present every year in Serbia, frequently causing epidemics. The majority of pumpkin cultivars are not resistant or tolerant to viral infections, but sources of resistance have been identified in various related species. So far, the identified sources of resistance to the ZYMV are found in Cucurbita moschata and Citrullus lanatus var. lanatus genotypes and consist of one or several major dominant genes of resistance. It is a similar case with WMV, although the sources of dominant major genes are identified in C. lanatus and C. colocynthis. The sources of resistance to CMV in the form of one dominant gene have been identified in the genotype C. moschata, although the introduction of this gene by conventional means proved to be very difficult. Besides the aforementioned, substantial efforts are being made in developing genotypes with multiple resistance against several viruses and even other pathogens, as well as genotypes with resistance to the most significant plant aphid species, through mechanisms of antixenosis or antibiosis. The other way of obtaining resistant genotypes includes genetic manipulation. Genetically modified resistant pumpkins have been among the first successfully developed crops. Genotypes with pathogen derived resistance can already be found in commercially grown pumpkins in some parts of the world, and they have been developed by introducing the coat protein gene of one, two or all three viruses which are the most frequent, ZYMV, WMV and CMV. Yet, this approach to the control of pumpkin viral diseases is related to possible negative consequences, mostly through the already detected gene transfer to wild plants and development of resistant transgenic weeds of unpredictable impact on the environment. Improved host plant genetic resistance to viral infections or biological vectors, developed by conventional or genetic engineering methods, represents the most dynamic and prominent field of research. It is economically and ecologically the most justified approach to the control of pumpkin and other plant diseases caused by viruses non-persistently transmitted by aphids.


2014 ◽  
Vol 155 (26) ◽  
pp. 1019-1023
Author(s):  
Judit Gervain

The successful therapy of hepatitis C viral infection requires that the illness is diagnosed before the development of structural changes of the liver. Testing is stepwise consisting of screening, diagnosis, and anti-viral therapy follow-up. For these steps there are different biochemical, serological, histological and molecular biological methods available. For screening, alanine aminotransferase and anti-HCV tests are used. The diagnosis of infection is confirmed using real-time polymerase chain reaction of the viral nucleic acid. Before initiation of the therapy liver biopsy is recommended to determine the level of structural changes in the liver. Alternatively, transient elastography or blood biomarkers may be also used for this purpose. Differential diagnosis should exclude the co-existence of other viral infections and chronic hepatitis due to other origin, with special attention to the presence of autoantibodies. The outcome of the antiviral therapy and the length of treatment are mainly determined by the viral genotype. In Hungary, most patients are infected with genotype 1, subtype b. The polymorphism type that occurs in the single nucleotide located next to the interleukin 28B region in chromosome 19 and the viral polymorphism type Q80K for infection with HCV 1a serve as predictive therapeutic markers. The follow-up of therapy is based on the quantitative determination of viral nucleic acid according to national and international protocols and should use the same method and laboratory throughout the treatment of an individual patient. Orv. Hetil., 2014, 155(26), 1019–1023.


2019 ◽  
Vol 20 (13) ◽  
pp. 1108-1121 ◽  
Author(s):  
Miriam Dibo ◽  
Eduardo C. Battocchio ◽  
Lucas M. dos Santos Souza ◽  
Matheus D. Veloso da Silva ◽  
Bruna K. Banin-Hirata ◽  
...  

The epidemiological impact of viral diseases, combined with the emergence and reemergence of some viruses, and the difficulties in identifying effective therapies, have encouraged several studies to develop new therapeutic strategies for viral infections. In this context, the use of immunotherapy for the treatment of viral diseases is increasing. One of the strategies of immunotherapy is the use of antibodies, particularly the monoclonal antibodies (mAbs) and multi-specific antibodies, which bind directly to the viral antigen and bring about activation of the immune system. With current advancements in science and technology, several such antibodies are being tested, and some are already approved and are undergoing clinical trials. The present work aims to review the status of mAb development for the treatment of viral diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria Zacharioudaki ◽  
Ippokratis Messaritakis ◽  
Emmanouil Galanakis

AbstractThe role of vitamin D in innate and adaptive immunity is recently under investigation. In this study we explored the potential association of genetic variances in vitamin D pathway and infections in infancy. Τhis prospective case–control study included infants 0–24 months with infection and age-matched controls. The single nucleotide polymorphisms of vitamin D receptor (VDR) gene (BsmI, FokI, ApaI, TaqI), vitamin D binding protein (VDBP) (Gc gene, rs7041, rs4588) and CYP27B1 (rs10877012) were genotyped by polymerase chain reaction-restriction fragment length polymorphism. In total 132 infants were enrolled, of whom 40 with bacterial and 52 with viral infection, and 40 healthy controls. As compared to controls, ΤaqI was more frequent in infants with viral infection compared to controls (p = 0.03, OR 1.96, 95% CI 1.1–3.58). Moreover, Gc1F was more frequent in the control group compared to infants with viral infection (p = 0.007, OR 2.7, 95% CI 1.3–5.6). No significant differences were found regarding the genetic profile for VDR and VDBP in infants with bacterial infection compared to the controls and also regarding CYP27B1 (rs10877012) between the studied groups. Genotypic differences suggest that vitamin D pathway might be associated with the host immune response against viral infections in infancy.


Sign in / Sign up

Export Citation Format

Share Document