scholarly journals Strength-Endurance: Interaction Between Force-Velocity Condition and Power Output

2020 ◽  
Vol 11 ◽  
Author(s):  
Jean Romain Rivière ◽  
Nicolas Peyrot ◽  
Matthew R. Cross ◽  
Laurent A. Messonnier ◽  
Pierre Samozino
1997 ◽  
Vol 200 (22) ◽  
pp. 2907-2912 ◽  
Author(s):  
G N Askew ◽  
I S Young ◽  
J D Altringham

The function of many muscles requires that they perform work. Fatigue of mouse soleus muscle was studied in vitro by subjecting it to repeated work loop cycles. Fatigue resulted in a reduction in force, a slowing of relaxation and in changes in the force-velocity properties of the muscle (indicated by changes in work loop shape). These effects interacted to reduce the positive work and to increase the negative work performed by the muscle, producing a decline in net work. Power output was sustained for longer and more cumulative work was performed with decreasing cycle frequency. However, absolute power output was highest at 5 Hz (the cycle frequency for maximum power output) until power fell below 20% of peak power. As cycle frequency increased, slowing of relaxation had greater effects in reducing the positive work and increasing the negative work performed by the muscle, compared with lower cycle frequencies.


1996 ◽  
Vol 271 (2) ◽  
pp. C676-C683 ◽  
Author(s):  
J. J. Widrick ◽  
S. W. Trappe ◽  
D. L. Costill ◽  
R. H. Fitts

Gastrocnemius muscle fiber bundles were obtained by needle biopsy from five middle-aged sedentary men (SED group) and six age-matched endurance-trained master runners (RUN group). A single chemically permeabilized fiber segment was mounted between a force transducer and a position motor, subjected to a series of isotonic contractions at maximal Ca2+ activation (15 degrees C), and subsequently run on a 5% polyacrylamide gel to determine myosin heavy chain composition. The Hill equation was fit to the data obtained for each individual fiber (r2 > or = 0.98). For the SED group, fiber force-velocity parameters varied (P < 0.05) with fiber myosin heavy chain expression as follows: peak force, no differences: peak tension (force/fiber cross-sectional area), type IIx > type IIa > type I; maximal shortening velocity (Vmax, defined as y-intercept of force-velocity relationship), type IIx = type IIa > type I; a/Pzero (where a is a constant with dimensions of force and Pzero is peak isometric force), type IIx > type IIa > type I. Consequently, type IIx fibers produced twice as much peak power as type IIa fibers, whereas type IIa fibers produced about five times more peak power than type I fibers. RUN type I and IIa fibers were smaller in diameter and produced less peak force than SED type I and IIa fibers. The absolute peak power output of RUN type I and IIa fibers was 13 and 27% less, respectively, than peak power of similarly typed SED fibers. However, type I and IIa Vmax and a/Pzero were not different between the SED and RUN groups, and RUN type I and IIa power deficits disappeared after power was normalized for differences in fiber diameter. Thus the reduced absolute peak power output of the type I and IIa fibers from the master runners was a result of the smaller diameter of these fibers and a corresponding reduction in their peak isometric force production. This impairment in absolute peak power production at the single fiber level may be in part responsible for the reduced in vivo power output previously observed for endurance-trained athletes.


PLoS ONE ◽  
2017 ◽  
Vol 12 (12) ◽  
pp. e0190335 ◽  
Author(s):  
Axel J. Fenwick ◽  
Alexander M. Wood ◽  
Bertrand C. W. Tanner

2009 ◽  
Vol 106 (2) ◽  
pp. 378-384 ◽  
Author(s):  
H. Roots ◽  
G. Ball ◽  
J. Talbot-Ponsonby ◽  
M. King ◽  
K. McBeath ◽  
...  

In experiments on small bundles of intact fibers from a rat fast muscle, in vitro, we examined the decline in force in repeated tetanic contractions; the aim was to characterize the effect of shortening and of temperature on the initial phase of muscle fatigue. Short tetanic contractions were elicited at a control repetition rate of 1/60 s, and fatigue was induced by raising the rate to 1/5 s for 2–3 min, both in isometric mode (no shortening) and in shortening mode, in which each tetanic contraction included a ramp shortening at a standard velocity. In experiments at 20°C ( n = 12), the force decline during a fatigue run was 25% in the isometric mode but was significantly higher (35%) in the shortening mode. In experiments at different temperatures (10–30°C, n = 11), the tetanic frequency and duration were adjusted as appropriate, and for shortening mode, the velocity was adjusted for maximum power output. In isometric mode, fatigue of force was significantly less at 30°C (∼20%) than at 10°C (∼30%); the power output (force × velocity) was >10× higher at 30°C than at 10°C, and power decline during a fatigue run was less at 30°C (∼20–30%) than at 10°C (∼50%). The finding that the extent of fatigue is increased with shortening contractions and is lower at higher temperatures is consistent with the view that force depression by inorganic phosphate, which accumulates within fibers during activity, may be a primary cause of initial muscle fatigue.


2017 ◽  
Vol 38 (14) ◽  
pp. 1083-1089 ◽  
Author(s):  
Johnny Padulo ◽  
Gian Migliaccio ◽  
Luca Ardigò ◽  
Bruno Leban ◽  
Marco Cosso ◽  
...  

AbstractThe aim was to compare lower-limb power, force, and velocity capabilities between squat and leg press movements. Ten healthy sportsmen performed ballistic lower-limb push-offs against 5-to-12 different loads during both the squat and leg press. Individual linear force-velocity and polynomial power-velocity relationships were determined for both movements from push-off mean force and velocity measured continuously with a pressure sensor and linear encoder. Maximal power output, theoretical maximal force and velocity, force-velocity profile and optimal velocity were computed. During the squat, maximal power output (17.7±3.59 vs. 10.9±1.39 W·kg−1), theoretical maximal velocity (1.66±0.29 vs. 0.88±0.18 m·s−1), optimal velocity (0.839±0.144 vs. 0.465±0.107 m·s−1), and force-velocity profile (−27.2±8.5 vs. −64.3±29.5 N·s·m−1·kg−1) values were significantly higher than during the leg press (p=0.000, effect size=1.72–3.23), whereas theoretical maximal force values (43.1±8.6 vs. 51.9±14.0 N·kg−1, p=0.034, effect size=0.75) were significantly lower. The mechanical capabilities of the lower-limb extensors were different in the squat compared with the leg press with higher maximal power due to much higher velocity capabilities (e.g. ability to produce force at high velocities) even if moderately lower maximal force qualities.


2018 ◽  
Author(s):  
Jean-Benoit Morin ◽  
Pedro Jiménez-Reyes ◽  
Matt Brughelli ◽  
Pierre Samozino

Lower limb maximal power output (Pmax) is a key physical component of performance in many sports. During squat jump (SJ) and countermovement jump (CMJ) tests, athletes produce high amounts of mechanical work over a short duration to displace their body mass (i.e. the dimension of mechanical power). Thus, jump height has been frequently used by the sports science and medicine communities as an indicator of Pmax. However, in this article, we contended that SJ and CMJ height are in fact poor indicators of Pmax in trained populations. To support our opinion, we first detailed why, theoretically, jump height and Pmax are not fully related. Specifically, we demonstrated that individual body mass, distance of push-off, optimal loading and force-velocity characteristics confound the jump height-Pmax relationship. We also discussed the poor relationship between SJ or CMJ height and Pmax measured with a force plate based on data reported in the literature, which added to our own experimental evidence.Finally, we discussed the limitations of existing practical solutions (regression-based estimation equations and allometric scaling), and advocated using a valid, reliable and simple field-based procedure to compute individual Pmax directly from jump height, body mass and push-off distance. The latter may allow researchers and practitioners to reduce bias in their assessment of Pmax by using jump height as an input with a simple yet accurate computation method, and not as the first/only variable of interest.


2018 ◽  
Author(s):  
Robert L. Anderson ◽  
Darshan V. Trivedi ◽  
Saswata S. Sarkar ◽  
Marcus Henze ◽  
Weikang Ma ◽  
...  

Summary:Mutations in β-cardiac myosin, the predominant motor protein for human heart contraction, can alter power output and cause cardiomyopathy. However, measurements of the intrinsic force, velocity and ATPase activityof myosin have not provided a consistent mechanism to link mutations to muscle pathology. An alternative modelpositsthat mutations in myosin affect the stability ofa sequestered, super-relaxed state (SRX) of the proteinwith very slow ATP hydrolysis and thereby change the number of myosin heads accessible to actin. Here, using a combination of biochemical and structural approaches, we show that purified myosin enters aSRX thatcorresponds to a folded-back conformation, which in muscle fibersresults insequestration of heads around the thick filament backbone. Mutations that cause HCM destabilize this state, while the small molecule mavacamtenpromotes it. These findings provide a biochemical and structural link between the genetics and physiology ofcardiomyopathywith implications for therapeutic strategies.


1988 ◽  
Vol 140 (1) ◽  
pp. 187-197 ◽  
Author(s):  
N. A. CURTIN ◽  
R. C. WOLEDGE

The relationship between force and velocity of shortening and between power and velocity were examined for myotomal muscle fibre bundles from the dogfish. The maximum velocity of shortening, mean value 4.8 ± 0.2 μms−1 half sarcomere−1 (±S.E.M., N = 13), was determined by the ‘slack step’ method (Edman, 1979) and was found to be independent of fish length. The force-velocity relationship was hyperbolic, except at the high-force end where the observations were below the hyperbola fitted to the rest of the data. The maximum power output was 91 ± 14 W kg−1 wet mass (±S.E.M., N = 7) at a velocity of shortening of 1.3 ± 0.13μms−1 halfsarcomere−1 (±S.E.M., N = 7). This power output is considerably higher than that previously reported for skinned fibres (Bone et al. 1986). Correspondingly the force-velocity relationship is less curved for intact fibres than for skinned fibres. The maximum swimming speed (normalized for fish length) predicted from the observed power output of the muscle fibres decreased with increasing fish size; it ranged from 12.9 to 7.8 fish lengths s−1 for fish 0155–0.645m in length.


2019 ◽  
Vol 68 (1) ◽  
pp. 123-133 ◽  
Author(s):  
Blanca Romero-Moraleda ◽  
Juan Del Coso ◽  
Jorge Gutiérrez-Hellín ◽  
Carlos Ruiz-Moreno ◽  
Jozo Grgic ◽  
...  

AbstractThis study aimed to investigate the fluctuations of muscle performance in the Smith machine half-squat exercise during three different phases of the menstrual cycle. Thirteen resistance-trained and eumenorrheic women volunteered to participate in the study (58.6 ± 7.8 kg, 31.1 ± 5.5 years). In a pre-experimental test, the half-squat one-repetition maximum (1RM) was measured. Body mass, tympanic temperature and urine concentration of the luteinizing hormone were estimated daily for ~30 days to determine the early follicular phase (EFP), the late follicular phase (LFP), and the mid-luteal phase (MLP) of the menstrual cycle. On the second day of each phase, performance of the Smith machine half-squats was assessed using 20, 40, 60 and 80% of one repetition maximum (1RM). In each load, force, velocity, and power output were measured during the concentric phase of the exercise by means of a rotatory encoder. The data were analyzed using one-way repeated measures ANOVA coupled with magnitude-based inferences. Overall, force, velocity and power output were very similar in all menstrual cycle phases with unclear differences in most of the pairwise comparisons and effect sizes >0.2. The results of this investigation suggest that eumenorrheic females have similar muscle strength and power performance in the Smith machine half-squat exercise during the EFP, LFP, and MLP phases of the menstrual cycle.


Sign in / Sign up

Export Citation Format

Share Document