scholarly journals Phenotypic Changes in T Cell and Macrophage Subtypes in Perivascular Adipose Tissues Precede High-Fat Diet-Induced Hypertension

2021 ◽  
Vol 12 ◽  
Author(s):  
Ramya Kalyana Kumar ◽  
Yongliang Yang ◽  
Andres G. Contreras ◽  
Hannah Garver ◽  
Sudin Bhattacharya ◽  
...  

Graphical AbstractSex-differences in immune cell activation status (numbers/mean fluorescence intensity) in MRPVAT (A) and APVAT (B). (Key: e.g., at 10 weeks, higher density/MFI of M1-like macrophages occur in CD females vs. CD males in MRPVAT.) Differences in mean arterial pressure between HFD and respective CD-fed rats are presented as mm Hg [Supplementary Figure 1 and as measured by radiotelemetry (Fernandes et al., 2018)] with 10, 17, and 24 weeks on diet.

Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Yining Jin ◽  
Omar Kana ◽  
Ramya Kumar ◽  
Rance Nault ◽  
Hannah Garver ◽  
...  

There is considerable evidence for a causative role for T cells in hypertension, including studies with immunosuppressive drugs and T cell-deficient models. Our previous studies showed that soluble mediators from mesenteric perivascular adipose tissue (mPVAT) modulate T cell function. Specifically, conditioned media from mPVAT (mPVAT-CM) from Dahl S rats on a high fat diet (HFD) promoted expression of the pro-inflammatory cytokines, IFNg, IL-17a and GM-CSF, by activated T cells. Furthermore, the Dahl S rats on HFD will later develop hypertension. Hypothesis: mPVAT is stimulated to produce immunomodulatory mediators that promotes Th1/17 differentiation preceding the development of HFD-induced hypertension. We conducted bulk RNA-seq on activated splenocytes cultured in mPVAT-CM from Dahl S rats on either control or HFD for 10 weeks. In accordance with our previous studies, PVAT-CM from HFD-fed rats significantly upregulated many genes associated with IFNg/IL-17 induction, including Mpeg1, Lyz2 and Tnfsf4 (5.0±1.78, 3.70±0.53 and 1.78±0.42 fold over Control diet, respectively). In contrast, Th2/Treg-associated genes, such as Ctla2a (-0.27±0.02) and Ccr4 (-0.41±0.03) were downregulated. We also performed single cell (sc) RNA-seq on the PVAT stromal vascular fraction (SVF) and found that acute inflammatory genes were enriched in the HFD group. Together with the bulk RNA-seq on mPVAT, these data strongly suggest that the pro-inflammatory mPVAT micro-environment may promote Th1/Th17 differentiation. To identify mediators in PVAT-CM that may induce Th1/Th17 differentiation, we compared the bulk RNA-seq on splenocytes cultured in PVAT-CM with bulk RNA-seq conducted on the whole mPVAT itself. We found that a T cell co-stimulatory receptor DPP4 (CD26), which is closely associated with T cell activation was significantly increased in mPVAT from HFD-fed rats (33.4±2.3 HFD vs. 15.3±1.8 Control diet). We also observed an increase in DPP4 global expression from mPVAT SVF in HFD-fed rats, as determined by scRNA-seq. Conclusion: The data suggest that HFD promotes the IFNg and IL-17a pathways in PVAT, which precedes hypertension in Dahl S rats and correlates with an increase in expression of DPP-4, a gene that promotes T cell activation. (NIH P01 HL070687).


2015 ◽  
Vol 117 (6) ◽  
pp. 547-557 ◽  
Author(s):  
Liang Xiao ◽  
Annet Kirabo ◽  
Jing Wu ◽  
Mohamed A. Saleh ◽  
Linjue Zhu ◽  
...  

2020 ◽  
Vol 22 (10) ◽  
Author(s):  
Fernando Elijovich ◽  
Cheryl L. Laffer ◽  
Melis Sahinoz ◽  
Ashley Pitzer ◽  
Jane F. Ferguson ◽  
...  

Abstract Purpose of Review Salt sensitivity of blood pressure (SSBP) is an independent predictor of death due to cardiovascular events and affects nearly 50% of the hypertensive and 25% of the normotensive population. Strong evidence indicates that reducing sodium (Na+) intake decreases blood pressure (BP) and cardiovascular events. The precise mechanisms of how dietary Na+ contributes to elevation and cardiovascular disease remain unclear. The goal of this review is to discuss mechanisms of salt-induced cardiovascular disease and how the microbiome may play a role. Recent Findings The innate and adaptive immune systems are involved in the genesis of salt-induced hypertension. Mice fed a high-salt diet exhibit increased inflammation with a marked increase in dendritic cell (DC) production of interleukin (IL)-6 and formation of isolevuglandins (IsoLG)-protein adducts, which drive interferon-gamma (IFN-γ) and IL-17A production by T cells. While prior studies have mainly focused on the brain, kidney, and vasculature as playing a role in salt-induced hypertension, the gut is the first and largest location for Na+ absorption. Research from our group and others strongly suggests that the gut microbiome contributes to salt-induced inflammation and hypertension. Summary Recent studies suggest that alterations in the gut microbiome contribute to salt-induced hypertension. However, the contribution of the microbiome to SSBP and its underlying mechanisms are not known. Targeting the microbiota and the associated immune cell activation could conceivably provide the much-needed therapy for SSBP.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yi Li ◽  
Fangjie Wang ◽  
Saber Imani ◽  
Ling Tao ◽  
Youcai Deng ◽  
...  

The worldwide epidemic of metabolic diseases, especially obesity and other diseases caused by it, has shown a dramatic increase in incidence. A great deal of attention has been focused on the underlying mechanisms of these pathological processes and potential strategies to solve these problems. Chronic inflammation initiated by abdominal adipose tissues and immune cell activation in obesity is the major cause of the consequent development of complications. In addition to adipocytes, macrophages and monocytes, natural killer (NK) cells have been verified to be vital components involved in shaping the inflammatory microenvironment, thereby leading to various obesity-related metabolic diseases. Here, we provide an overview of the roles of NK cells and the interactions of these cells with other immune and nonimmune cells in the pathological processes of metabolic diseases. Finally, we also discuss potential therapeutic strategies targeting NK cells to treat metabolic diseases.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 222-OR
Author(s):  
MICHAEL J. NASH ◽  
TAYLOR K. SODERBORG ◽  
RACHEL C. JANSSEN ◽  
ERIC M. PIETRAS ◽  
JACOB E. FRIEDMAN

2013 ◽  
Vol 20 (37) ◽  
pp. 4806-4814 ◽  
Author(s):  
Brigitta Buttari ◽  
Elisabetta Profumo ◽  
Rita Businaro ◽  
Luciano Saso ◽  
Raffaele Capoano ◽  
...  

2021 ◽  
Vol 116 (1) ◽  
Author(s):  
Marius Keller ◽  
Valbona Mirakaj ◽  
Michael Koeppen ◽  
Peter Rosenberger

AbstractCardiovascular pathologies are often induced by inflammation. The associated changes in the inflammatory response influence vascular endothelial biology; they complicate the extent of ischaemia and reperfusion injury, direct the migration of immune competent cells and activate platelets. The initiation and progression of inflammation is regulated by the classical paradigm through the system of cytokines and chemokines. Therapeutic approaches have previously used this knowledge to control the extent of cardiovascular changes with varying degrees of success. Neuronal guidance proteins (NGPs) have emerged in recent years and have been shown to be significantly involved in the control of tissue inflammation and the mechanisms of immune cell activation. Therefore, proteins of this class might be used in the future as targets to control the extent of inflammation in the cardiovascular system. In this review, we describe the role of NGPs during cardiovascular inflammation and highlight potential therapeutic options that could be explored in the future.


Author(s):  
Won-Il Choi ◽  
Jae-Hyun Yoon ◽  
Seo-Hyun Choi ◽  
Bu-Nam Jeon ◽  
Hail Kim ◽  
...  

AbstractZbtb7c is a proto-oncoprotein that controls the cell cycle and glucose, glutamate, and lipid metabolism. Zbtb7c expression is increased in the liver and white adipose tissues of aging or high-fat diet-fed mice. Knockout or knockdown of Zbtb7c gene expression inhibits the adipocyte differentiation of 3T3-L1 cells and decreases adipose tissue mass in aging mice. We found that Zbtb7c was a potent transcriptional repressor of SIRT1 and that SIRT1 was derepressed in various tissues of Zbtb7c-KO mice. Mechanistically, Zbtb7c interacted with p53 and bound to the proximal promoter p53RE1 and p53RE2 to repress the SIRT1 gene, in which p53RE2 was particularly critical. Zbtb7c induced p53 to interact with the corepressor mSin3A-HADC1 complex at p53RE. By repressing the SIRT1 gene, Zbtb7c increased the acetylation of Pgc-1α and Pparγ, which resulted in repression or activation of Pgc-1α or Pparγ target genes involved in lipid metabolism. Our study provides a molecular target that can overexpress SIRT1 protein in the liver, pancreas, and adipose tissues, which can be beneficial in the treatment of diabetes, obesity, longevity, etc.


Sign in / Sign up

Export Citation Format

Share Document