scholarly journals Inflammatory Cytokines, Immune Cells, and Organ Interactions in Heart Failure

2021 ◽  
Vol 12 ◽  
Author(s):  
Huihui Li ◽  
Chen Chen ◽  
Dao Wen Wang

Despite mounting evidence demonstrating the significance of inflammation in the pathophysiological mechanisms of heart failure (HF), most large clinical trials that target the inflammatory responses in HF yielded neutral or even worsening outcomes. Further in-depth understanding about the roles of inflammation in the pathogenesis of HF is eagerly needed. This review summarizes cytokines, cardiac infiltrating immune cells, and extracardiac organs that orchestrate the complex inflammatory responses in HF and highlights emerging therapeutic targets.

2016 ◽  
Vol 397 (12) ◽  
pp. 1277-1286 ◽  
Author(s):  
Hyesook Yoon ◽  
Isobel A. Scarisbrick

Abstract Kallikrein-related peptidase 6 (Klk6) is elevated in the serum of multiple sclerosis (MS) patients and is hypothesized to participate in inflammatory and neuropathogenic aspects of the disease. To test this hypothesis, we investigated the impact of systemic administration of recombinant Klk6 on the development and progression of MOG35-55-induced experimental autoimmune encephalomyelitis (EAE). First, we determined that Klk6 expression is elevated in the spinal cord of mice with EAE at the peak of clinical disease and in immune cells upon priming with the disease-initiating peptide in vitro. Systemic administration of recombinant Klk6 to mice during the priming phase of disease resulted in an exacerbation of clinical symptoms, including earlier onset of disease and higher levels of spinal cord inflammation and pathology. Treatment of MOG35-55-primed immune cells with Klk6 in culture enhanced expression of pro-inflammatory cytokines, interferon-γ, tumor necrosis factor, and interleukin-17, while reducing anti-inflammatory cytokines interleukin-4 and interleukin-5. Together these findings provide evidence that elevations in systemic Klk6 can bias the immune system towards pro-inflammatory responses capable of exacerbating the development of neuroinflammation and paralytic neurological deficits. We suggest that Klk6 represents an important target for conditions in which pro-inflammatory responses play a critical role in disease development, including MS.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Norbert Gerdes ◽  
Christina Buerger ◽  
Holger Winkels ◽  
Christian Weber ◽  
Esther Lutgens

Atherosclerosis is a lipid driven chronic inflammatory disease of the arterial wall, involving both innate and adaptive immune responses. Specialized immune cells such as monocytes, B cells, T cells and dendritic cells (DCs) contribute to disease progression or control the inflammatory responses. The CD40-CD40L dyad was identified as an efficient modulator of cellular immune responses. CD40 is a member of the tumor necrosis factor receptor (TNFR) superfamily and is activated by CD40 ligand (CD40L). CD40 and CD40L both are expressed on the majority of immune and non-immune cells associated with atherosclerosis. However, the specific contribution of CD40-CD40L signaling on the different single cell types towards atherosclerosis progression remains undefined. Here, we aimed to investigate the cell type-specific mechanisms of CD40-CD40L interactions in atherosclerosis by generating mice with a conditional ablation of CD40L on T cells. Hyperlipidemic mice with a T cell-specific deficiency of CD40L developed significantly smaller atherosclerotic lesions in the ascending after 28 weeks of chow diet, and following 6 weeks of a cholesterol-enriched diet when compared to their littermate controls. Changes in lesion size were accompanied by a modified anti-inflammatory plaque phenotype, characterized by an increased proportion of smooth muscle cells and a reduced number of pro-inflammatory immune cells, such as macrophages and T cells. T cell CD40L-deficient mice displayed systematically reduced expression of pro-inflammatory cytokines such as IL-1β, IL-2, IL-12, and IFNγ, and increased expression of anti-inflammatory cytokines IL-10 and TGFβ. This anti-inflammatory milieu was paralleled a change in the development and activation status of the T cells with mice lacking CD40L on T cells displaying a reduction in the expression of cytokines and gene markers associated with the activation of T cells (e.g., IL-2, CD69). This change was also reflected within the T cell populations which had a reduced proportion of activated effector T cells and an increased ratio of naïve T cells. Thus, our study ascribes CD40L on T cells a central role in atherosclerosis.


2021 ◽  
Vol 10 (5) ◽  
pp. 1146
Author(s):  
Anush Barkhudaryan ◽  
Wolfram Doehner ◽  
Nadja Scherbakov

Heart failure (HF) is a severe clinical syndrome accompanied by a number of comorbidities. Ischemic stroke occurs frequently in patients with HF as a complication of the disease. In the present review, we aimed to summarize the current state of research on the role of cardio–cerebral interactions in the prevalence, etiology, and prognosis of both diseases. The main pathophysiological mechanisms underlying the development of stroke in HF and vice versa are discussed. In addition, we reviewed the results of recent clinical trials investigating the prevalence and prevention of stroke in patients with HF.


2019 ◽  
Vol 20 (8) ◽  
pp. 799-816 ◽  
Author(s):  
Yue Qiu ◽  
Guo-wei Tu ◽  
Min-jie Ju ◽  
Cheng Yang ◽  
Zhe Luo

Sepsis, which is a highly heterogeneous syndrome, can result in death as a consequence of a systemic inflammatory response syndrome. The activation and regulation of the immune system play a key role in the initiation, development and prognosis of sepsis. Due to the different periods of sepsis when the objects investigated were incorporated, clinical trials often exhibit negative or even contrary results. Thus, in this review we aim to sort out the current knowledge in how immune cells play a role during sepsis.


Sign in / Sign up

Export Citation Format

Share Document