scholarly journals Endosomal Cholesterol in Viral Infections – A Common Denominator?

2021 ◽  
Vol 12 ◽  
Author(s):  
Mirco Glitscher ◽  
Eberhard Hildt

Cholesterol has gained tremendous attention as an essential lipid in the life cycle of virtually all viruses. These seem to have developed manifold strategies to modulate the cholesterol metabolism to the side of lipid uptake and de novo synthesis. In turn, affecting the cholesterol homeostasis has emerged as novel broad-spectrum antiviral strategy. On the other hand, the innate immune system is similarly regulated by the lipid and stimulated by its derivatives. This certainly requires attention in the design of antiviral strategies aiming to decrease cellular cholesterol, as evidence accumulates that withdrawal of cholesterol hampers innate immunity. Secondly, there are exceptions to the rule of the abovementioned virus-induced metabolic shift toward cholesterol anabolism. It therefore is of interest to dissect underlying regulatory mechanisms, which we aimed for in this minireview. We further collected evidence for intracellular cholesterol concentrations being less important in viral life cycles as compared to the spatial distribution of the lipid. Various routes of cholesterol trafficking were found to be hijacked in viral infections with respect to organelle-endosome contact sites mediating cholesterol shuttling. Thus, re-distribution of cellular cholesterol in the context of viral infections requires more attention in ongoing research. As a final aim, a pan-antiviral treatment could be found just within the transport and re-adjustment of local cholesterol concentrations. Thus, we aimed to emphasize the importance of the regulatory roles the endosomal system fulfils herein and hope to stimulate research in this field.

2008 ◽  
Vol 295 (4) ◽  
pp. E820-E831 ◽  
Author(s):  
Céline Fernandez ◽  
Marie Lindholm ◽  
Morten Krogh ◽  
Stéphanie Lucas ◽  
Sara Larsson ◽  
...  

Transcriptomics analysis revealed that genes involved in hepatic de novo cholesterol synthesis were downregulated in fed HSL-null mice that had been on a high-fat diet (HFD) for 6 mo. This finding prompted a further analysis of cholesterol metabolism in HSL-null mice, which was performed in fed and 16-h-fasted mice on a normal chow diet (ND) or HFD regimen. Plasma cholesterol was elevated in HSL-null mice, in all tested conditions, as a result of cholesterol enrichment of HDL and VLDL. Hepatic esterified cholesterol content and ATP-binding cassette transporter A1 (ABCA1) mRNA and protein levels were increased in HSL-null mice regardless of the dietary regimen. Unsaturated fatty acid composition of hepatic triglycerides was modified in fasted HSL-null mice on ND and HFD. The increased ABCA1 expression had no major effect on cholesterol efflux from HSL-null mouse hepatocytes. Taken together, the results of this study suggest that HSL plays a critical role in the hydrolysis of cytosolic cholesteryl esters and that increased levels of hepatic cholesteryl esters, due to lack of action of HSL in the liver, are the main mechanism underlying the imbalance in cholesterol metabolism in HSL-null mice.


2019 ◽  
Author(s):  
M. Pera ◽  
D. Larrea ◽  
J. Montesinos ◽  
C. Guardia-Laguarta ◽  
R.R. Agrawal ◽  
...  

The link between cholesterol homeostasis and the cleavage of the amyloid precursor protein (APP), and their relationship to the pathogenesis of Alzheimer’s disease (AD) is still unknown. Cellular cholesterol levels are regulated by a crosstalk between the plasma membrane (PM), where most of the cholesterol resides, and the endoplasmic reticulum (ER), where the protein machinery that regulates cholesterol resides. This crosstalk between PM and ER is believed to be regulated by lipid-sensing peptide(s) that can modulate the internalization of extracellular cholesterol and/or its de novo synthesis in the ER. Our data here indicates that the 99-aa C-terminal fragment of APP (C99), a cholesterol-binding peptide, regulates cholesterol trafficking between the PM and the ER. In AD models, increases in C99 provoke the upregulation of cholesterol internalization and its delivery to the ER, which in turn result into the loss of lipid homeostasis and the appearance of AD signatures, such as higher production of longer forms of amyloid β. Our data suggest a novel role of C99 as mediator of cholesterol disturbances in AD, and as a potential early hallmark of the disease.


2021 ◽  
Vol 11 ◽  
Author(s):  
Isabella Giacomini ◽  
Federico Gianfanti ◽  
Maria Andrea Desbats ◽  
Genny Orso ◽  
Massimiliano Berretta ◽  
...  

Cholesterol is a ubiquitous sterol with many biological functions, which are crucial for proper cellular signaling and physiology. Indeed, cholesterol is essential in maintaining membrane physical properties, while its metabolism is involved in bile acid production and steroid hormone biosynthesis. Additionally, isoprenoids metabolites of the mevalonate pathway support protein-prenylation and dolichol, ubiquinone and the heme a biosynthesis. Cancer cells rely on cholesterol to satisfy their increased nutrient demands and to support their uncontrolled growth, thus promoting tumor development and progression. Indeed, transformed cells reprogram cholesterol metabolism either by increasing its uptake and de novo biosynthesis, or deregulating the efflux. Alternatively, tumor can efficiently accumulate cholesterol into lipid droplets and deeply modify the activity of key cholesterol homeostasis regulators. In light of these considerations, altered pathways of cholesterol metabolism might represent intriguing pharmacological targets for the development of exploitable strategies in the context of cancer therapy. Thus, this work aims to discuss the emerging evidence of in vitro and in vivo studies, as well as clinical trials, on the role of cholesterol pathways in the treatment of cancer, starting from already available cholesterol-lowering drugs (statins or fibrates), and moving towards novel potential pharmacological inhibitors or selective target modulators.


Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2021 ◽  
Author(s):  
María Aguilar-Ballester ◽  
Andrea Herrero-Cervera ◽  
Ángela Vinué ◽  
Sergio Martínez-Hervás ◽  
Herminia González-Navarro

Cholesterol, the most important sterol in mammals, helps maintain plasma membrane fluidity and is a precursor of bile acids, oxysterols, and steroid hormones. Cholesterol in the body is obtained from the diet or can be de novo synthetized. Cholesterol homeostasis is mainly regulated by the liver, where cholesterol is packed in lipoproteins for transport through a tightly regulated process. Changes in circulating lipoprotein cholesterol levels lead to atherosclerosis development, which is initiated by an accumulation of modified lipoproteins in the subendothelial space; this induces significant changes in immune cell differentiation and function. Beyond lesions, cholesterol levels also play important roles in immune cells such as monocyte priming, neutrophil activation, hematopoietic stem cell mobilization, and enhanced T cell production. In addition, changes in cholesterol intracellular metabolic enzymes or transporters in immune cells affect their signaling and phenotype differentiation, which can impact on atherosclerosis development. In this review, we describe the main regulatory pathways and mechanisms of cholesterol metabolism and how these affect immune cell generation, proliferation, activation, and signaling in the context of atherosclerosis.


Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 514
Author(s):  
Malgorzata Sidorkiewicz ◽  
Martyna Grek-Kowalinska ◽  
Anna Piekarska

The hepatitis C virus (HCV) is known as a main etiological cause of chronic hepatitis. HCV infection disturbs cholesterol metabolism of the host, which is frequently observed in patients suffering from chronic hepatitis C (CHC). The course of viral infections remains under strict control of microRNA (miRNA). In the case of HCV, miR-122 exerts a positive effect on HCV replication in vitro. The purpose of this study was to investigate the impact of peginterferon alpha (pegIFN-α) and ribavirin treatments on the expression of miR-122 and the cholesterol level in the peripheral blood mononuclear cells (PBMCs) of CHC patients. We report here that the level of miR-122 expression in the PBMCs decreased after the antiviral treatment in comparison to the pretreated state. Simultaneously, the level of cholesterol in the PBMCs of CHC patients was higher six months following the treatment than it was pretreatment. Consequently, it seems that the decrease of miR-122 expression in the PBMCs of CHC patients is one of the antiviral effects connected with the pegIFN-alpha/ribavirin treatments.


Science ◽  
2020 ◽  
Vol 367 (6477) ◽  
pp. eaax0182 ◽  
Author(s):  
Suzanne L. Topalian ◽  
Janis M. Taube ◽  
Drew M. Pardoll

Cancer immunotherapies that target the programmed cell death 1 (PD-1):programmed death-ligand 1 (PD-L1) immune checkpoint pathway have ushered in the modern oncology era. Drugs that block PD-1 or PD-L1 facilitate endogenous antitumor immunity and, because of their broad activity spectrum, have been regarded as a common denominator for cancer therapy. Nevertheless, many advanced tumors demonstrate de novo or acquired treatment resistance, and ongoing research efforts are focused on improving patient outcomes. Using anti–PD-1 or anti–PD-L1 treatment against earlier stages of cancer is hypothesized to be one such solution. This Review focuses on the development of neoadjuvant (presurgical) immunotherapy in the era of PD-1 pathway blockade, highlighting particular considerations for biological mechanisms, clinical trial design, and pathologic response assessments. Findings from neoadjuvant immunotherapy studies may reveal pathways, mechanisms, and molecules that can be cotargeted in new treatment combinations to increase anti–PD-1 and anti–PD-L1 efficacy.


2022 ◽  
pp. 1-27
Author(s):  
Lydia Qian ◽  
Amanda B. Chai ◽  
Ingrid C. Gelissen ◽  
Andrew J. Brown

The cholesterol is a vital component of cell membranes and myelin sheaths, and a precursor for essential molecules such as steroid hormones. In humans, cholesterol is partially obtained through the diet, while the majority is synthesized in the body, primarily in the liver. However, the limited exchange between the central nervous system and peripheral circulation, due to the presence of the blood-brain barrier, necessitates cholesterol in the brain to be exclusively acquired from local de novo synthesis. This cholesterol is reutilized efficiently, rendering a much slower overall turnover of the compound in the brain as compared with the periphery. Furthermore, brain cholesterol is regulated independently from peripheral cholesterol. Numerous enzymes, proteins, and other factors are involved in cholesterol synthesis and metabolism in the brain. Understanding the unique mechanisms and pathways involved in the maintenance of cholesterol homeostasis in the brain is critical, considering perturbations to these processes are implicated in numerous neurodegenerative diseases. This review focuses on the developing understanding of cholesterol metabolism in the brain, discussing the sites and processes involved in its synthesis and regulation, as well as the mechanisms involved in its distribution throughout, and elimination from, the brain.


2020 ◽  
Vol 20 (4) ◽  
pp. 423-432 ◽  
Author(s):  
Imre Kovesdi ◽  
Tibor Bakacs

: Viral interference, originally, referred to a state of temporary immunity, is a state whereby infection with a virus limits replication or production of a second infecting virus. However, replication of a second virus could also be dominant over the first virus. In fact, dominance can alternate between the two viruses. Expression of type I interferon genes is many times upregulated in infected epithelial cells. Since the interferon system can control most, if not all, virus infections in the absence of adaptive immunity, it was proposed that viral induction of a nonspecific localized temporary state of immunity may provide a strategy to control viral infections. Clinical observations also support such a theory, which gave credence to the development of superinfection therapy (SIT). SIT is an innovative therapeutic approach where a non-pathogenic virus is used to infect patients harboring a pathogenic virus. : For the functional cure of persistent viral infections and for the development of broad- spectrum antivirals against emerging viruses a paradigm shift was recently proposed. Instead of the virus, the therapy should be directed at the host. Such a host-directed-therapy (HDT) strategy could be the activation of endogenous innate immune response via toll-like receptors (TLRs). Superinfection therapy is such a host-directed-therapy, which has been validated in patients infected with two completely different viruses, the hepatitis B (DNA), and hepatitis C (RNA) viruses. SIT exerts post-infection interference via the constant presence of an attenuated non-pathogenic avian double- stranded (ds) RNA viral vector which boosts the endogenous innate (IFN) response. SIT could, therefore, be developed into a biological platform for a new “one drug, multiple bugs” broad-spectrum antiviral treatment approach.


2021 ◽  
Vol 48 (3) ◽  
pp. 2775-2789
Author(s):  
Ludwig Stenz

AbstractThe 300 bp dimeric repeats digestible by AluI were discovered in 1979. Since then, Alu were involved in the most fundamental epigenetic mechanisms, namely reprogramming, pluripotency, imprinting and mosaicism. These Alu encode a family of retrotransposons transcribed by the RNA Pol III machinery, notably when the cytosines that constitute their sequences are de-methylated. Then, Alu hijack the functions of ORF2 encoded by another transposons named L1 during reverse transcription and integration into new sites. That mechanism functions as a complex genetic parasite able to copy-paste Alu sequences. Doing that, Alu have modified even the size of the human genome, as well as of other primate genomes, during 65 million years of co-evolution. Actually, one germline retro-transposition still occurs each 20 births. Thus, Alu continue to modify our human genome nowadays and were implicated in de novo mutation causing diseases including deletions, duplications and rearrangements. Most recently, retrotransposons were found to trigger neuronal diversity by inducing mosaicism in the brain. Finally, boosted during viral infections, Alu clearly interact with the innate immune system. The purpose of that review is to give a condensed overview of all these major findings that concern the fascinating physiology of Alu from their discovery up to the current knowledge.


Sign in / Sign up

Export Citation Format

Share Document