scholarly journals Cholesterol Metabolic Reprogramming in Cancer and Its Pharmacological Modulation as Therapeutic Strategy

2021 ◽  
Vol 11 ◽  
Author(s):  
Isabella Giacomini ◽  
Federico Gianfanti ◽  
Maria Andrea Desbats ◽  
Genny Orso ◽  
Massimiliano Berretta ◽  
...  

Cholesterol is a ubiquitous sterol with many biological functions, which are crucial for proper cellular signaling and physiology. Indeed, cholesterol is essential in maintaining membrane physical properties, while its metabolism is involved in bile acid production and steroid hormone biosynthesis. Additionally, isoprenoids metabolites of the mevalonate pathway support protein-prenylation and dolichol, ubiquinone and the heme a biosynthesis. Cancer cells rely on cholesterol to satisfy their increased nutrient demands and to support their uncontrolled growth, thus promoting tumor development and progression. Indeed, transformed cells reprogram cholesterol metabolism either by increasing its uptake and de novo biosynthesis, or deregulating the efflux. Alternatively, tumor can efficiently accumulate cholesterol into lipid droplets and deeply modify the activity of key cholesterol homeostasis regulators. In light of these considerations, altered pathways of cholesterol metabolism might represent intriguing pharmacological targets for the development of exploitable strategies in the context of cancer therapy. Thus, this work aims to discuss the emerging evidence of in vitro and in vivo studies, as well as clinical trials, on the role of cholesterol pathways in the treatment of cancer, starting from already available cholesterol-lowering drugs (statins or fibrates), and moving towards novel potential pharmacological inhibitors or selective target modulators.

2020 ◽  
Vol 217 (9) ◽  
Author(s):  
Tobiloba E. Oni ◽  
Giulia Biffi ◽  
Lindsey A. Baker ◽  
Yuan Hao ◽  
Claudia Tonelli ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis, and new therapies are needed. Altered metabolism is a cancer vulnerability, and several metabolic pathways have been shown to promote PDAC. However, the changes in cholesterol metabolism and their role during PDAC progression remain largely unknown. Here we used organoid and mouse models to determine the drivers of altered cholesterol metabolism in PDAC and the consequences of its disruption on tumor progression. We identified sterol O-acyltransferase 1 (SOAT1) as a key player in sustaining the mevalonate pathway by converting cholesterol to inert cholesterol esters, thereby preventing the negative feedback elicited by unesterified cholesterol. Genetic targeting of Soat1 impairs cell proliferation in vitro and tumor progression in vivo and reveals a mevalonate pathway dependency in p53 mutant PDAC cells that have undergone p53 loss of heterozygosity (LOH). In contrast, pancreatic organoids lacking p53 mutation and p53 LOH are insensitive to SOAT1 loss, indicating a potential therapeutic window for inhibiting SOAT1 in PDAC.


2020 ◽  
Vol 117 (18) ◽  
pp. 9964-9972 ◽  
Author(s):  
Di Yu ◽  
Yang Liu ◽  
Yiqiang Zhou ◽  
Victor Ruiz-Rodado ◽  
Mioara Larion ◽  
...  

Isocitrate dehydrogenase (IDH) mutation is a common genetic abnormality in human malignancies characterized by remarkable metabolic reprogramming. Our present study demonstrated that IDH1-mutated cells showed elevated levels of reactive oxygen species and higher demands on Nrf2-guided glutathione de novo synthesis. Our findings showed that triptolide, a diterpenoid epoxide from Tripterygium wilfordii, served as a potent Nrf2 inhibitor, which exhibited selective cytotoxicity to patient-derived IDH1-mutated glioma cells in vitro and in vivo. Mechanistically, triptolide compromised the expression of GCLC, GCLM, and SLC7A11, which disrupted glutathione metabolism and established synthetic lethality with reactive oxygen species derived from IDH1 mutant neomorphic activity. Our findings highlight triptolide as a valuable therapeutic approach for IDH1-mutated malignancies by targeting the Nrf2-driven glutathione synthesis pathway.


2020 ◽  
Vol 61 (12) ◽  
pp. 1617-1628
Author(s):  
Natalie Bruiners ◽  
Noton K. Dutta ◽  
Valentina Guerrini ◽  
Hugh Salamon ◽  
Ken D. Yamaguchi ◽  
...  

The rise of drug-resistant tuberculosis poses a major risk to public health. Statins, which inhibit both cholesterol biosynthesis and protein prenylation branches of the mevalonate pathway, increase anti-tubercular antibiotic efficacy in animal models. However, the underlying molecular mechanisms are unknown. In this study, we used an in vitro macrophage infection model to investigate simvastatin’s anti-tubercular activity by systematically inhibiting each branch of the mevalonate pathway and evaluating the effects of the branch-specific inhibitors on mycobacterial growth. The anti-tubercular activity of simvastatin used at clinically relevant doses specifically targeted the cholesterol biosynthetic branch rather than the prenylation branches of the mevalonate pathway. Using Western blot analysis and AMP/ATP measurements, we found that simvastatin treatment blocked activation of mechanistic target of rapamycin complex 1 (mTORC1), activated AMP-activated protein kinase (AMPK) through increased intracellular AMP:ATP ratios, and favored nuclear translocation of transcription factor EB (TFEB). These mechanisms all induce autophagy, which is anti-mycobacterial. The biological effects of simvastatin on the AMPK-mTORC1-TFEB-autophagy axis were reversed by adding exogenous cholesterol to the cells. Our data demonstrate that the anti-tubercular activity of simvastatin requires inhibiting cholesterol biosynthesis, reveal novel links between cholesterol homeostasis, the AMPK-mTORC1-TFEB axis, and Mycobacterium tuberculosis infection control, and uncover new anti-tubercular therapy targets.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii12-iii12
Author(s):  
M Han ◽  
S Wang ◽  
X Li ◽  
J Wang ◽  
R Bjerkvig

Abstract BACKGROUND Dysregulated cholesterol metabolism is a hallmark of many cancers, including glioblastoma (GBM), but its role in disease progression is not well understood. Here, we identified cholesterol 24-hydroxylase (CYP46A1), a brain-specific enzyme responsible for elimination of cholesterol through conversion of cholesterol to 24(S)-hydroxycholesterol (24OHC), as one of the most dramatically dysregulated cholesterol metabolism genes in GBM. MATERIAL AND METHODS Molecular and clinical data was obtained from publicly genomic databases. Immunohistochemistry was applied to assess protein levels of CYP46A1 in primary GBM samples. Lentiviral constructs expressing CYP46A1 were transduced into LN229, LN18 and primary GBM GSCs for functional assays carried out in vitro and in vivo in an orthotopic xenograft model. RNA-seq was performed to identify downstream targets of 24OHC. RESULTS CYP46A1 was significantly decreased in GBM samples compared to normal brain tissue. Reduced CYP46A1 expression was associated with increasing tumour grade and poor prognosis in GBM patients. Ectopic expression of CYP46A1 suppressed cell proliferation and in vivo tumour growth by increasing 24OHC levels. Treatment of GBM cells with 24OHC suppressed tumour growth through regulation of LXR and SREBP signalling. Efavirenz (EFV), an activator of CYP46A1 with BBB penetration, inhibited GBM growth in vivo. CONCLUSION Our findings demonstrate that CYP46A1 is a critical regulator of cellular cholesterol in GBM and that the CYP46A1/24OHC axis is a potential therapeutic target.


2021 ◽  
Author(s):  
Asmaa El-Kenawi ◽  
William Dominguez-Viqueira ◽  
Min Liu ◽  
Shivanshu Awasthi ◽  
Aysenur Keske ◽  
...  

Tumor-associated macrophages are key immune cells associated with cancer progression. Here we sought to determine the role of macrophages in castration-resistant prostate cancer (CRPC) using a syngeneic model that reflected the mutational landscape of the disease. A transcriptomic analysis of CRPC tumors following macrophage depletion revealed lower molecular signatures for steroid and bile acid synthesis, indicating potential perturbation of cholesterol metabolism. Since cholesterol is the precursor of the five major classes of steroid hormones, we reasoned that macrophages were regulating androgen biosynthesis within the prostate tumor microenvironment. Indeed, macrophage depletion reduced the levels of androgens within prostate tumors and restricted androgen receptor (AR) nuclear localization in vitro and in vivo. Macrophages were cholesterol rich and had the ability to transfer cholesterol to tumor cells in vitro, and AR nuclear translocation was inhibited by activation of Liver X Receptor (LXR)-β, the master regulator of cholesterol homeostasis. Finally, combining macrophage depletion with androgen deprivation therapy increased survival, supporting the therapeutic potential of targeting macrophages in CRPC.


2021 ◽  
Vol 220 (9) ◽  
Author(s):  
Wan Yun Ho ◽  
Jer-Cherng Chang ◽  
Kenneth Lim ◽  
Amaury Cazenave-Gassiot ◽  
Aivi T. Nguyen ◽  
...  

Cholesterol metabolism operates autonomously within the central nervous system (CNS), where the majority of cholesterol resides in myelin. We demonstrate that TDP-43, the pathological signature protein for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), influences cholesterol metabolism in oligodendrocytes. TDP-43 binds directly to mRNA of SREBF2, the master transcription regulator for cholesterol metabolism, and multiple mRNAs encoding proteins responsible for cholesterol biosynthesis and uptake, including HMGCR, HMGCS1, and LDLR. TDP-43 depletion leads to reduced SREBF2 and LDLR expression, and cholesterol levels in vitro and in vivo. TDP-43–mediated changes in cholesterol levels can be restored by reintroducing SREBF2 or LDLR. Additionally, cholesterol supplementation rescues demyelination caused by TDP-43 deletion. Furthermore, oligodendrocytes harboring TDP-43 pathology from FTD patients show reduced HMGCR and HMGCS1, and coaggregation of LDLR and TDP-43. Collectively, our results indicate that TDP-43 plays a role in cholesterol homeostasis in oligodendrocytes, and cholesterol dysmetabolism may be implicated in TDP-43 proteinopathies–related diseases.


2021 ◽  
Vol 118 (28) ◽  
pp. e2019822118
Author(s):  
Gen Li ◽  
Jun Wu ◽  
Le Li ◽  
Peng Jiang

Cancer cells acquire metabolic reprogramming to satisfy their high biogenetic demands, but little is known about how metabolic remodeling enables cancer cells to survive stress associated with genomic instability. Here, we show that the mitochondrial methylenetetrahydrofolate dehydrogenase (MTHFD2) is transcriptionally suppressed by p53, and its up-regulation by p53 inactivation leads to increased folate metabolism, de novo purine synthesis, and tumor growth in vivo and in vitro. Moreover, MTHFD2 unexpectedly promotes nonhomologous end joining in response to DNA damage by forming a complex with PARP3 to enhance its ribosylation, and the introduction of a PARP3-binding but enzymatically inactive MTHFD2 mutant (e.g., D155A) sufficiently prevents DNA damage. Notably, MTHFD2 depletion strongly restrains p53-deficient cell proliferation and sensitizes cells to chemotherapeutic agents, indicating a potential role for MTHFD2 depletion in the treatment of p53-deficient tumors.


Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 47
Author(s):  
Venugopal Gunda ◽  
Thiago C. Genaro-Mattos ◽  
Jyoti B. Kaushal ◽  
Ramakanth Chirravuri-Venkata ◽  
Gopalakrishnan Natarajan ◽  
...  

Pancreatic cancer (PC) is characterized by metabolic deregulations that often manifest as deviations in metabolite levels and aberrations in their corresponding metabolic genes across the clinical specimens and preclinical PC models. Cholesterol is one of the critical metabolites supporting PC, synthesized or acquired by PC cells. Nevertheless, the significance of the de novo cholesterol synthesis pathway has been controversial in PC, indicating the need to reassess this pathway in PC. We utilized preclinical models and clinical specimens of PC patients and cell lines and utilized mass spectrometry-based sterol analysis. Further, we also performed in silico analysis to corroborate the significance of de novo cholesterol synthesis pathway in PC. Our results demonstrated alteration in free sterol levels, including free cholesterol, across in vitro, in vivo, and clinical specimens of PC. Especially, our sterol analyses established consistent alterations in free cholesterol across the different PC models. Overall, this study demonstrates the significance and consistency in deviation of cholesterol synthesis pathway in PC while showing the aberrations in sterol metabolite intermediates and the related genes using preclinical models, in silico platforms, and the clinical specimens.


2019 ◽  
Vol 115 (9) ◽  
pp. 1416-1424 ◽  
Author(s):  
Julia van Tuijl ◽  
Leo A B Joosten ◽  
Mihai G Netea ◽  
Siroon Bekkering ◽  
Niels P Riksen

Abstract Atherosclerosis is characterized by a persistent, low-grade inflammation of the arterial wall. Monocytes and monocyte-derived macrophages play a pivotal role in the various stages of atherosclerosis. In the past few years, metabolic reprogramming has been identified as an important controller of myeloid cell activation status. In addition, metabolic and epigenetic reprogramming are key regulatory mechanisms of trained immunity, which denotes the non-specific innate immune memory that can develop after brief stimulation of monocytes with microbial or non-microbial stimuli. In this review, we build the case that metabolic reprogramming of monocytes and macrophages, and trained immunity in particular, contribute to the pathophysiology of atherosclerosis. We discuss the specific metabolic adaptations, including changes in glycolysis, oxidative phosphorylation, and cholesterol metabolism, that have been reported in atherogenic milieus in vitro and in vivo. In addition, we will focus on the role of these metabolic pathways in the development of trained immunity.


Author(s):  
А.А. Раецкая ◽  
С.В. Калиш ◽  
С.В. Лямина ◽  
Е.В. Малышева ◽  
О.П. Буданова ◽  
...  

Цель исследования. Доказательство гипотезы, что репрограммированные in vitro на М3 фенотип макрофаги при введении в организм будут существенно ограничивать развитие солидной карциномы in vivo . Методика. Рост солидной опухоли инициировали у мышей in vivo путем подкожной инъекции клеток карциномы Эрлиха (КЭ). Инъекцию макрофагов с нативным М0 фенотипом и с репрограммированным M3 фенотипом проводили в область формирования солидной КЭ. Репрограммирование проводили с помощью низких доз сыворотки, блокаторов факторов транскрипции STAT3/6 и SMAD3 и липополисахарида. Использовали две схемы введения макрофагов: раннее и позднее. При раннем введении макрофаги вводили на 1-е, 5-е, 10-е и 15-е сут. после инъекции клеток КЭ путем обкалывания макрофагами с четырех сторон область развития опухоли. При позднем введении, макрофаги вводили на 10-е, 15-е, 20-е и 25-е сут. Через 15 и 30 сут. после введения клеток КЭ солидную опухоль иссекали и измеряли ее объем. Эффект введения макрофагов оценивали качественно по визуальной и пальпаторной характеристикам солидной опухоли и количественно по изменению ее объема по сравнению с группой без введения макрофагов (контроль). Результаты. Установлено, что M3 макрофаги при раннем введении от начала развития опухоли оказывают выраженный антиопухолевый эффект in vivo , который был существенно более выражен, чем при позднем введении макрофагов. Заключение. Установлено, что введение репрограммированных макрофагов M3 ограничивает развитие солидной карциномы в экспериментах in vivo . Противоопухолевый эффект более выражен при раннем введении М3 макрофагов. Обнаруженные в работе факты делают перспективным разработку клинической версии биотехнологии ограничения роста опухоли, путем предварительного программирования антиопухолевого врожденного иммунного ответа «в пробирке». Aim. To verify a hypothesis that macrophages reprogrammed in vitro to the M3 phenotype and injected into the body substantially restrict the development of solid carcinoma in vivo . Methods. Growth of a solid tumor was initiated in mice in vivo with a subcutaneous injection of Ehrlich carcinoma (EC) cells. Macrophages with a native M0 phenotype or reprogrammed towards the M3 phenotype were injected into the region of developing solid EC. Reprogramming was performed using low doses of serum, STAT3/6 and SMAD3 transcription factor blockers, and lipopolysaccharide. Two schemes of macrophage administration were used: early and late. With the early administration, macrophages were injected on days 1, 5, 10, and 15 following the injection of EC cells at four sides of the tumor development area. With the late administration, macrophages were injected on days 10, 15, 20, and 25. At 15 and 30 days after the EC cell injection, the solid tumor was excised and its volume was measured. The effect of macrophage administration was assessed both qualitatively by visual and palpation characteristics of solid tumor and quantitatively by changes in the tumor volume compared with the group without the macrophage treatment. Results. M3 macrophages administered early after the onset of tumor development exerted a pronounced antitumor effect in vivo , which was significantly greater than the antitumor effect of the late administration of M3 macrophages. Conclusion. The observed significant inhibition of in vivo growth of solid carcinoma by M3 macrophages makes promising the development of a clinical version of the biotechnology for restriction of tumor growth by in vitro pre-programming of the antitumor, innate immune response.


Sign in / Sign up

Export Citation Format

Share Document