scholarly journals The Association Between Force-Velocity Relationship in Countermovement Jump and Sprint With Approach Jump, Linear Acceleration and Change of Direction Ability in Volleyball Players

2021 ◽  
Vol 12 ◽  
Author(s):  
Jernej Pleša ◽  
Žiga Kozinc ◽  
Nejc Šarabon

The force-velocity (FV) relationship allows the identification of the mechanical capabilities of musculoskeletal system to produce force, power and velocity. The aim of this study was to assess the associations of the mechanical variables derived from the FV relationship with approach jump, linear sprint and change of direction (CoD) ability in young male volleyball players. Thirty-seven participants performed countermovement jumps with incremental loads from bodyweight to 50–100 kg (depending on the individual capabilities), 25-m sprint with split times being recorded for the purpose of FV relationship calculation, two CoD tests (505 test and modified T-test) and approach jump. Results in this study show that approach jump performance seems to be influenced by maximal power output (r = 0.53) and horizontal force production (r = 0.51) in sprinting, as well as force capacity in jumping (r = 0.45). Only the FV variables obtained from sprinting alone contributed to explaining linear sprinting and CoD ability (r = 0.35–0.93). An interesting finding is that sprinting FV variables have similar and some even stronger correlation with approach jump performance than jumping FV variables, which needs to be considered for volleyball training optimization. Based on the results of this study it seems that parameters that refer to horizontal movement capacity are important for volleyball athletic performance. Further interventional studies are needed to check how to implement specific FV-profile-based training programs to improve specific mechanical capabilities that determine volleyball athletic performance and influence the specific physical performance of volleyball players.

Author(s):  
Andrés Baena-Raya ◽  
Manuel A. Rodríguez-Pérez ◽  
Pedro Jiménez-Reyes ◽  
Alberto Soriano-Maldonado

Sprint running and change of direction (COD) present similar mechanical demands, involving an acceleration phase in which athletes need to produce and apply substantial horizontal external force. Assessing the mechanical properties underpinning individual sprint acceleration might add relevant information about COD performance in addition to that obtained through sprint time alone. The present technical report uses a case series of three athletes with nearly identical 20 m sprint times but with different mechanical properties and COD performances. This makes it possible to illustrate, for the first time, a potential rationale for why the sprint force-velocity (FV) profile (i.e., theoretical maximal force (F0), velocity (V0), maximal power output (Pmax), ratio of effective horizontal component (RFpeak) and index of force application technique (DRF)) provides key information about COD performance (i.e., further to that derived from simple sprint time), which can be used to individualize training. This technical report provides practitioners with a justification to assess the FV profile in addition to sprint time when the aim is to enhance sprint acceleration and COD performance; practical interpretations and advice on how training interventions could be individualized based on the athletes’ differential sprint mechanical properties are also specified.


2021 ◽  
Vol 79 (1) ◽  
pp. 221-228
Author(s):  
Andrés Baena-Raya ◽  
Dolores García-Ortega ◽  
Sergio Sánchez-López ◽  
Alberto Soriano-Maldonado ◽  
Pedro Jiménez- Reyes ◽  
...  

Abstract The aim of the present study was to analyze the association of the sprint force-velocity profile [Hzt FV profile] variables with change of direction [COD] performance in female futsal players. Twelve female futsal players (age: 19.83 ± 4.2 years; body height: 160.75 ± 8.37 cm; body mass: 57.64 ± 8.3 kg) volunteered to be evaluated in the following assessments: Hzt FV profile, 505 test, modified 505 test [M505test] and V-cut test. The Spearman’s correlation coefficient [rs] (p < 0.05) was used to determine the relationship of the mechanical variables of the sprint (maximum power output [Pmax], maximum horizontal force production [F0] and maximum velocity [V0]) with COD performance. V0 showed a very large significant association with the 505 test (rs = -0.767; 90% CI: (-0.92 to -0.43); p < 0.01) and a large association with the V-cut test (rs = -0.641; 90% CI: (-0.86 to -0.21); p < 0.05), whereas Pmax was strongly associated with results of the 505 test (rs = -0.821; 90% CI: (-0.94 to -0.55); p < 0.01) and largely associated with the V-cut test results (rs = -0.596; 90% CI: (-0.84 to -0.14); p < 0.05). In conclusion, maximal power and velocity output during sprinting are determinant factors to successful COD in 180º and 45º cuts, thus, the Hzt FV profile should be assessed in female futsal players to better understand the influence of sprint mechanical properties on COD performance and prescribe individualized training programs


2021 ◽  
Vol 9 (7_suppl3) ◽  
pp. 2325967121S0017
Author(s):  
Sophia M. Ulman ◽  
Laura Saleem ◽  
Kirsten Tulchin-Francis

Background: The Functional Movement Screen (FMS) is a tool designed to establish a baseline for fundamental movement capacity, highlight limitations and limb asymmetries, and identify potential injury risk. Previous research has shown that individual components of the screen are also indicative of injury risk, as well as potential predictors of athletic performance unlike the FMS composite scores. However, this literature is limited and lacks statistical power. Identifying which component scores are predictive of injury risk and athletic performance would provide a quick, powerful tool for coaches and trainers to evaluate athletes. Purpose: To determine if individual component scores of the FMS are associated with athletic performance in highly-active youth athletes. Methods: Youth athletes participated in the Specialized Athlete Functional Evaluation (SAFE) Program. Data collection was extensive, however, for the purpose of this abstract, only a selection of data was analyzed – age, BMI, years played, total number of past injuries, isokinetic knee strength, 10- and 20-meter sprint, single-leg hop (SLH) distance, and FMS scores. Seated knee flexion/extension strength was collected at 120°/second using a Biodex System 4, and peak torque was normalized by body weight. The maximum distance of three SLHs was recorded for each leg and normalized to leg length. FMS scores used for analysis included the total composite and component scores, including the deep squat, hurdle step, in-line lunge, shoulder mobility, active straight-leg raise, trunk stability push-up, and rotary stability. Wilcoxon Signed Ranks Tests were used to determine side-to-side differences, and Kruskal-Wallis tests were performed to determine differences in athletic performance based on FMS scores ( α<0.05). Results: A total of 38 highly-active, youth athletes (26F; 15.4±2.6 years; BMI 21.0±5.3) were tested. Participants reported playing organized sports for 8.7±3.4 years, having 2.0±1.2 past sports-related injuries, and 74% reported specializing in a single sport. No side-to-side differences were found. While the composite FMS score significantly differed by number of past injuries ( p=0.036), it was not associated with athletic performance. Alternatively, left knee strength, sprint speeds, and right hop distance significantly differed by the hurdle step component score (Table 1). Conclusion: While the composite FMS score was not an indicator of athletic performance, the hurdle step component score was associated with strength, speed, and jump performance. This individual task could be a beneficial tool for coaches and trainers when evaluating athletic ability and injury risk of athletes. Tables/Figures: [Table: see text]


2005 ◽  
Vol 99 (1) ◽  
pp. 237-243 ◽  
Author(s):  
Takashi Ichinose ◽  
Kazunobu Okazaki ◽  
Shizue Masuki ◽  
Hiroyuki Mitono ◽  
Mian Chen ◽  
...  

It is well known that hyperosmolality suppresses thermoregulatory responses and that plasma osmolality (Posmol) increases with exercise intensity. We examined whether the decreased esophageal temperature thresholds for cutaneous vasodilation (THFVC) and sweating (THSR) after 10-day endurance training (ET) are caused by either attenuated increase in Posmol at a given exercise intensity or blunted sensitivity of hyperosmotic suppression. Nine young male volunteers exercised on a cycle ergometer at 60% peak oxygen consumption rate (V̇o2 peak) for 1 h/day for 10 days at 30°C. Before and after ET, thermoregulatory responses were measured during 20-min exercise at pretraining 70% V̇o2 peak in the same environment as during ET under isoosmotic or hyperosmotic conditions. Hyperosmolality by ∼10 mosmol/kgH2O was attained by acute hypertonic saline infusion. After ET, V̇o2 peak and blood volume (BV) both increased by ∼4% ( P < 0.05), followed by a decrease in THFVC ( P < 0.05) but not by that in THSR. Although there was no significant decrease in Posmol at the thresholds after ET, the sensitivity of increase in THFVC at a given increase in Posmol [ΔTHFVC/ΔPosmol,°C·(mosmol/kgH2O)−1], determined by hypertonic infusion, was reduced to 0.021 ± 0.005 from 0.039 ± 0.004 before ET ( P < 0.05). The individual reductions in ΔTHFVC/ΔPosmol after ET were highly correlated with their increases in BV around THFVC ( r = −0.89, P < 0.005). In contrast, there was no alteration in the sensitivity of the hyperosmotic suppression of sweating after ET. Thus the downward shift of THFVC after ET was partially explained by the blunted sensitivity to hyperosmolality, which occurred in proportion to the increase in BV.


Author(s):  
Jason Williams ◽  
Timothy Baghurst ◽  
Micheál J Cahill

The purpose of this study was to assess current perceptions of strength and conditioning coaches’ use of sled towing (ST) as part of their training programs. One-hundred and twenty-five coaches responded to a survey of their ST practices. Themes investigated included the primary purpose and usefulness of using ST, the loads used in short and long distances, rest times between sprints, total volume of ST sprints per session, frequency of ST activity each month, and whether coaches engaged in force-velocity profiling in ST sprints. Eighty percent of coaches either agreed or strongly agreed that ST is a useful intervention tool for improving athletic performance. Speed strength was the physiological adaptation most sought after to improve ( n = 75) followed by power ( n = 72). Bodyweight (BW) loads of 20% were the most common across all distances. The two most common rest times given between each ST repetition were one to two minutes ( n = 37) and two to three minutes ( n = 37). The most common volume responses for individual training sessions were five to eight sprints ( n = 52) and three to five times per month, respectively. These data suggest strength and conditioning coaches view ST as an integral part of programming, primarily use loads of 20% BW for both short and long sprints and seek to optimize a number of different physiological adaptations. The majority of coaches have a favorable view of ST (88%); however, current training parameters used by strength and conditioning coaches may be inadequate to achieve their desired adaptations.


2021 ◽  
pp. 1-9
Author(s):  
Jessica G. Hunter ◽  
Gina L. Garcia ◽  
Sushant M. Ranadive ◽  
Jae Kun Shim ◽  
Ross H. Miller

Context: Understanding if roller massage prior to a run can mitigate fatigue-related decrements in muscle force production during prolonged running is important because of the association between fatigue and running-related injury. Objective: The authors investigated whether a bout of roller massage prior to running would (1) mitigate fatigue-related increases in vertical average load rate and free moment of the ground reaction force of running and (2) mitigate decreases in maximal countermovement jump height. Design: Repeated-measures study. Setting: Laboratory. Participants: A total of 14 recreational endurance athletes (11 men and 3 women) volunteered for the study. Interventions: A 12.5-minute foam roller protocol for the lower extremities and a fatiguing 30-minute treadmill run. Main Outcome Measures: Vertical average load rate, free moment, and maximal jump height before (PRE) and after (POST) the fatiguing treadmill run on separate experimental days: once where participants sat quietly prior to the fatiguing run (REST) and another where the foam roller protocol was performed prior to the run (ROLL). Results: A 2-way multiple analysis of variance found no significant differences in vertical average load rate, free moment, and jump height between PRE/POST times in both REST/ROLL conditions. Conclusions: The authors concluded that recreational endurance athletes maintain running mechanics and jump performance after a fatiguing run regardless of prerun roller massage and may not rely on prerun roller massage as a form of injury prevention.


1998 ◽  
Vol 84 (1) ◽  
pp. 200-206 ◽  
Author(s):  
J. M. Jakobi ◽  
E. Cafarelli

Jakobi, J. M., and E. Cafarelli. Neuromuscular drive and force production are not altered during bilateral contractions. J. Appl. Physiol. 84(1): 200–206, 1998.—Several investigators have studied the deficit in maximal voluntary force that is said to occur when bilateral muscle groups contract simultaneously. A true bilateral deficit (BLD) would suggest a significant limitation of neuromuscular control; however, some of the data from studies in the literature are equivocal. Our purpose was to determine whether there is a BLD in the knee extensors of untrained young male subjects during isometric contractions and whether this deficit is associated with a decreased activation of the quadriceps, increased activation of the antagonist muscle, or an alteration in motor unit firing rates. Twenty subjects performed unilateral (UL) and bilateral (BL) isometric knee extensions at 25, 50, 75, and 100% maximal voluntary contraction. Total UL and BL force (Δ3%) and maximal rate of force generation (Δ2.5%) were not significantly different. Total UL and BL maximal vastus lateralis electromyographic activity (EMG; 2.7 ± 0.28 vs. 2.6 ± 0.24 mV) and coactivation (0.17 ± 0.02 vs. 0.20 ± 0.02 mV) were also not different. Similarly, the ratio of force to EMG during submaximal UL and BL contractions was not different. Analysis of force production by each leg in UL and BL conditions showed no differences in force, rate of force generation, EMG, motor unit firing rates, and coactivation. Finally, assessment of quadriceps activity with the twitch interpolation technique indicated no differences in the degree of voluntary muscle activation (UL: 93.6 ± 2.51 Hz, BL: 90.1 ± 2.43 Hz). These results provide no evidence of a significant limitation in neuromuscular control between BL and UL isometric contractions of the knee extensor muscles in young male subjects.


2020 ◽  
Author(s):  
Kasper Krommes ◽  
Mathias F. Nielsen ◽  
Laura Krohn ◽  
Birk M. Grønfeldt ◽  
Kristian Thorborg ◽  
...  

AbstractThe Nordic Hamstring exercise reduces hamstring strain injuries in football and other sports, but the exercise is not well adopted in practice. Barriers from practitioners include fear of performance decrements, due to lack of specificity of the exercise with high speed running. However, in theory, increased eccentric hamstring strength could transfer to faster sprinting due to higher horizontal force production. Studies on the effect of the Nordic Hamstring exercise on performance have been conflicting and no synthesis of the evidence exists. We therefore pose the following question: does including the Nordic Hamstring exercise hamper sprint or jump performance in athletes? We will answer this question by performing a systematic review of the literature, critically appraise relevant studies, and GRADE the evidence across key outcomes and perform meta-analyses, meta-regression and subgroup analyses. In this protocol we outline the planned methods and procedures.Progress reportBesides this protocol, our data extraction form and the process of data extraction has been piloted on 3 relevant studies, along with familiarization with the Risk of Bias 2.0 tool. We have also comprised a preliminary search strategy for PubMed.Supplementary filesData Extraction Form (.pdf)Populated PRISMA-P checklist (.pdf)


Author(s):  
Michal Krzysztofik ◽  
Rafal Kalinowski ◽  
Robert Trybulski ◽  
Aleksandra Filip-Stachnik ◽  
Petr Stastny

Although velocity control in resistance training is widely studied, its utilization in eliciting post-activation performance enhancement (PAPE) responses receives little attention. Therefore, this study aimed to evaluate the effectiveness of heavy-loaded barbell squats (BS) with velocity loss control conditioning activity (CA) on PAPE in subsequent countermovement jump (CMJ) performance. Sixteen resistance-trained female volleyball players participated in this study (age: 24 ± 5 yrs.; body mass: 63.5 ± 5.2 kg; height: 170 ± 6 cm; relative BS one-repetition maximum (1RM): 1.45 ± 0.19 kg/body mass). Each participant performed two different conditions: a set of the BS at 80% 1 RM with repetitions performed until a mean velocity loss of 10% as the CA or a control condition without CA (CNTRL). To assess changes in jump height (JH) and relative mean power output (MP), the CMJ was performed 5 min before and throughout the 10 min after the CA. The two-way analysis of variance with repeated measures showed a significant main effect of condition (p = 0.008; η2 = 0.387) and time (p < 0.0001; η2 = 0.257) for JH. The post hoc test showed a significant decrease in the 10th min in comparison to the value from baseline (p < 0.006) for the CNTRL condition. For the MP, a significant interaction (p = 0.045; η2 = 0.138) was found. The post hoc test showed a significant decrease in the 10th min in comparison to the values from baseline (p < 0.006) for the CNTRL condition. No significant differences were found between all of the time points and the baseline value for the CA condition. The CA used in the current study fails to enhance subsequent countermovement jump performance in female volleyball players. However, the individual analysis showed that 9 out of the 16 participants (56%) responded positively to the applied CA, suggesting that the PAPE effect may be individually dependent and should be carefully verified before implementation in a training program.


Sign in / Sign up

Export Citation Format

Share Document