scholarly journals Specific Physiological and Anatomical Traits Associated With Polyploidy and Better Detoxification Processes Contribute to Improved Huanglongbing Tolerance of the Persian Lime Compared With the Mexican Lime

2021 ◽  
Vol 12 ◽  
Author(s):  
Gary Sivager ◽  
Leny Calvez ◽  
Saturnin Bruyere ◽  
Rosiane Boisne-Noc ◽  
Pierre Brat ◽  
...  

Huanglongbing (HLB) is presently a major threat to the citrus industry. Because of this disease, millions of trees are currently dying worldwide. The putative causal agent is a motile bacteria belonging to Candidatus Liberibacter spp., which is transmitted by psyllids. The bacteria is responsible for the synthesis of callose at the phloem sieve plate, leading to the obstruction of the pores that provide connections between adjacent sieve elements, thus limiting the symplastic transport of the sugars and starches synthesized in leaves to the other plant organs. The Persian triploid lime (Citrus latifolia) is one of the most HLB-tolerant citrus varieties, but the determinants associated with the tolerance are still unknown. HLB-infected diploid Mexican lime (Citrus aurantiifolia) and Persian lime were investigated. The leaf petiole was analyzed using scanning electron microscopy (SEM) to observe callose deposition at the phloem sieve plate. Leaf starch contents and detoxification enzyme activities were investigated. In the field, Persian lime leaves present more limited symptoms due to HLB than the Mexican lime leaves do. Photosynthesis, stomatal conductance, and transpiration decreased compared with control plants, but values remained greater in the Persian than in the Mexican lime. Analysis of the petiole sieve plate in control petiole samples showed that pores were approximately 1.8-fold larger in the Persian than in the Mexican lime. SEM analyses of petiole samples of symptomatic leaves showed the important deposition of callose into pores of Mexican and Persian limes, whereas biochemical analyses revealed better detoxification in Persian limes than in Mexican limes. Moreover, SEM analyses of infected petiole samples of asymptomatic leaves showed much larger callose depositions into the Mexican lime pores than in the Persian lime pores, whereas biochemical traits revealed much better behavior in Persian limes than in Mexican limes. Our results reveal that polyploids present specific behaviors associated with important physiological and biochemical determinants that may explain the better tolerance of the Persian lime against HLB compared with the Mexican lime.

Plant Disease ◽  
2008 ◽  
Vol 92 (10) ◽  
pp. 1468-1468
Author(s):  
R. Abou Kubaa ◽  
K. Djelouah ◽  
A. M. D'Onghia ◽  
R. Addante ◽  
M. Jamal

During the spring of 2006, the main Syrian citrus-growing areas of Lattakia (Jableh, Aledyye, Eseelya, Siano, and Hresoon provinces) and Tartous (Almintar, Aljammase, Karto, Majdaloonelbahr, Yahmour, Amreet, Althawra, and Safita provinces) were surveyed to assess the presence of Citrus tristeza virus (CTV). Eight nurseries (approximately 130 plants per nursery), two budwood source fields (approximately 230 trees per field), and 19 groves (approximately 60 trees per grove) containing the main citrus varieties were visually inspected and sampled for serological assays. The hierarchical sampling method was carried out in each selected grove (2). Infected samples were collected from two nurseries, two budwood source fields, and six groves. Stems and leaf petioles from nursery trees and flower explants from the groves were collected and analyzed for CTV by direct tissue blot immunoassay (DTBIA) with the commercial kit from Plantprint (Valencia, Spain). Of 2,653 samples tested, 89 (4%) CTV-infected plants were detected. Five citrus varieties were found to be infected and Meyer lemon (Citrus limon ‘Meyer’) had the highest incidence at 16%. Numerous sweet orange varieties (Citrus sinensis L.) were found to be highly infected in the field, but only the Washington navel sweet orange was found to be infected in the nurseries. No clear CTV symptoms were observed during the survey. Samples that were positive for CTV by DTBIA were also positive by biological indexing on Mexican lime (C. aurantifolia) and immunocapture-reverse transcription-PCR as described by Nolasco et al. (3). Coat protein gene sequences obtained from five selected clones of a Syrian CTV isolate (GenBank Accession No. EU626555) showed more than 99 and 98% nucleotide sequence identity to a Jordanian CTV isolate (GenBank Accession No. AY550252) and the VT isolate (GenBank Accession No. U56902), respectively. Almost all infected samples induced moderate vein clearing symptoms when grafted to Mexican lime. Symptoms of vein clearing, leaf cupping, stunting, and stem pitting on Mexican lime were induced by graft transmission of CTV from one Valencia sample from the Tartous area. The viral inoculum is widely and randomly distributed in commercial groves, especially in the southern Tartous area and in some nurseries. To our knowledge, this is the first report of CTV in Syria. However, CTV was reported from the neighboring citrus-growing countries of Lebanon, Turkey, and Jordan (1), and the severe seedling yellows strain is present in this area, which poses a potential threat to Syrian citriculture. References: (1) G. H. Anfoka et al. Phytopathol. Mediterr. 44:17, 2005. (2) G. Hughes and T. R. Gottwald, Phytopathology 88:715, 1998. (3) G. Nolasco et al. Eur. J. Plant Pathol. 108:293, 2002.


2019 ◽  
Vol 65 (1) ◽  
pp. 45-58 ◽  
Author(s):  
Qingrong Li ◽  
Sentai Liao ◽  
Huyu Zhi ◽  
Dongxu Xing ◽  
Yang Xiao ◽  
...  

Fusarium wilt is a devastating soil-borne disease caused mainly by highly host-specific formae speciales of Fusarium oxysporum. Antagonistic microorganisms play a very important role in Fusarium wilt control, and the isolation of potential biocontrol strains is becoming more and more important. We isolated a bacterial strain (SEM-9) from the high-temperature stage of silkworm excrement composting, which had a marked ability to solubilize phosphorus, promote the growth and increase the yield of the small Chinese cabbage, and which also exhibited considerable antagonistic effect towards Fusarium sambucinum and other fungi. The result of physiological and biochemical analyses, as well as genome sequencing, showed that SEM-9 was a strain of Bacillus subtilis. Through genome annotation and analysis, it was found that SEM-9 contained genes related to the regulation of biofilm formation, which may play an important role in colonization, and gene clusters encoding the biosynthesis of antimicrobials, such as surfactin, bacilysin, fengycin, and subtilosin-A. The production of such antifungal compounds may constitute the basis of the mode-of-action of SEM-9 against Fusarium spp. These data suggested that the SEM-9 strain has potential as both a biofertilizer and a biocontrol agent, with the potential to manage Fusarium wilt disease in crops.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Nima Khaledi ◽  
Parissa Taheri ◽  
Mahrokh Falahati-Rastegar

Abstract Fusarium graminearum and F. culmorum are the causal agents of Fusarium head blight (FHB) in cereal crops worldwide. Application of resistant cultivars is the most effective and economic method for management of FHB and reducing mycotoxin production in wheat. Understanding the physiological and biochemical mechanisms involved in basal resistance of wheat to FHB disease is limited. In this research, after screening resistance levels of eighteen wheat cultivars planted in Iran, Gaskozhen and Falat were identified as partially resistant and susceptible wheat cultivars against Fusarium spp., respectively. Also, we investigated the role of hydroxyl radical (OH−), nitric oxide (NO), callose deposition, lipid peroxidation and protein content in basal resistance of wheat to the hemi-biotrophic and necrotrophic Fusarium species causing FHB. Nitric oxide as a signaling molecule may be involved in physiological and defensive processes in plants. Our results showed that NO generation increased in seedlings and spikes of wheat cultivars after inoculation with Fusarium species. We observed earlier and stronger callose deposition at early time points after infection by Fusarium spp. isolates than in non-infected plants, which was positively related to the resistance levels in wheat cultivars. Higher levels of OH− and malondialdehyde (MDA) accumulation (as a marker of lipid peroxidation) were observed in the Falat than in the Gaskozhen cultivar, under non-infected and infected conditions. So, estimation of lipid peroxidation could be useful to evaluate cultivars’ susceptibility. These findings can provide novel insights for better recognition of physiological and biochemical markers of FHB resistance, which could be used for rapid screening of resistance levels in wheat cultivars against this destructive fungal disease.


Development ◽  
1998 ◽  
Vol 125 (5) ◽  
pp. 909-918 ◽  
Author(s):  
J.D. Faure ◽  
P. Vittorioso ◽  
V. Santoni ◽  
V. Fraisier ◽  
E. Prinsen ◽  
...  

The control of cell division by growth regulators is critical to proper plant development. The isolation of single-gene mutants altered in the response to plant hormones should permit the identification of essential genes controlling the growth and development of plants. We have isolated mutants pasticcino belonging to 3 complementation groups (pas1, pas2, pas3) in the progeny of independent ethyl methane sulfonate and T-DNA mutagenized Arabidopsis thaliana plants. The screen was performed in the presence or absence of cytokinin. The mutants isolated were those that showed a significant hypertrophy of their apical parts when grown on cytokinin-containing medium. The pas mutants have altered embryo, leaf and root development. They display uncoordinated cell divisions which are enhanced by cytokinin. Physiological and biochemical analyses show that cytokinins are probably involved in pas phenotypes. The PAS genes have been mapped respectively to chromosomes 3, 5 and 1 and represent new plant genes involved in the control of cell division and plant development.


2021 ◽  
Author(s):  
Qing Chen ◽  
Xiao-Qiang Liu ◽  
Xiao Liang ◽  
Ying Liu ◽  
Chun-Ling Wu ◽  
...  

Abstract Dangerous Paracoccus marginatus papaya mealybugs cause considerable threats and challenges to cassava production and processing. The deployment of resistant cultivars offers effective, economical and eco-friendly management strategies for pest management. We utilized P. marginatus mortality, development and reproduction to evaluate the resistance of fifteen cassava cultivars and conducted physiological and biochemical analyses when P. marginatus was fed on two resistant cultivars (Myanmar, C1115) and three susceptible cultivars (BRA900, Bread, SC205). Significantly lower digestive (amylase, sucrase, lipase), detoxification (glutathione-S-transferase and carboxylesterase) and antioxidant, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and polyphenol oxidase (PPO), enzyme activities were observed in P. marginatus feeding on resistant cultivars compared to susceptible cultivars. For resistant cultivars, a significant reduction was found in nutritional components containing free amino acids, nitrogen, soluble sugars and the secondary metabolite malondialdehyde. Additionally, significantly higher enzymatic activity (SOD, CAT, POD and PPO) levels and secondary metabolite quantities (total phenol and tannins) were found in resistant cultivars induced by P. marginatus compared with susceptible ones. Additionally, RT-qPCR tests showed that the transcripts of ten genes involved in nutrition, secondary metabolites and antioxidant activities were consistent with their physiology and biochemistry changes. Thus, resistant cultivars prevented P. marginatus populations from suffering lower P. marginatus damage by elevating secondary metabolite contents and antioxidant activities, reducing nutrition levels and decreasing enzymatic activities. This study will be beneficial in determining the important indexes for developing standard regulations to evaluate P. marginatus-resistant cassavas, helping the development of effective strategies for pest management.


2012 ◽  
Vol 84 (3) ◽  
pp. 823-832 ◽  
Author(s):  
Nara L.M. Alencar ◽  
Renato Innecco ◽  
Enéas Gomes-Filho ◽  
Maria Izabel Gallão ◽  
Juan C. Alvarez-Pizarro ◽  
...  

Cereus jamacaru, a Cactaceae found throughout northeast Brazil, is widely used as cattle food and as an ornamental and medicinal plant. However, there has been little information about the physiological and biochemical aspects involved in its germination. The aim of this study was to investigate its reserve mobilization during germination and early seedling growth. For this, C. jamacaru seeds were germinated in a growth chamber and collected at 0, 2, 4, 5, 6, 8 and 12 days after imbibition for morphological and biochemical analyses. Dry seeds had wrinkled seed coats and large, curved embryos. Lipids were the most abundant reserve, comprising approximately 55% and 65% of the dry mass for cotyledons and the hypocotylradicle axis, respectively. Soluble sugars and starch were the minor reserves, corresponding to approximately 2.2% of the cotyledons' dry mass, although their levels showed significant changes during germination. Soluble proteins corresponded to 40% of the cotyledons' dry mass, which was reduced by 81% at the final period of germination compared to dry seeds. C. jamacaru seed can be classified as an oil seed due to its high lipid content. Moreover, lipids were the main reserve mobilized during germination because their levels were strongly reduced after seed germination, while proteins were the second most utilized reserve in this process.


Chemosphere ◽  
2017 ◽  
Vol 178 ◽  
pp. 212-223 ◽  
Author(s):  
Mohammad Golam Mostofa ◽  
Mohammad Anwar Hossain ◽  
Md. Nurealam Siddiqui ◽  
Masayuki Fujita ◽  
Lam-Son Phan Tran

Plant Science ◽  
2004 ◽  
Vol 166 (4) ◽  
pp. 1057-1062 ◽  
Author(s):  
Regis Borges ◽  
Emilio C. Miguel ◽  
Janice M.R. Dias ◽  
Maura da Cunha ◽  
Ricardo E. Bressan-Smith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document