scholarly journals Phosphorus-Use Efficiency Modified by Complementary Effects of P Supply Intensity With Limited Root Growth Space

2021 ◽  
Vol 12 ◽  
Author(s):  
Haiqing Gong ◽  
Bilisuma Kabeto Wako ◽  
Yue Xiang ◽  
Xiaoqiang Jiao

Space availability and the maintenance of adequate phosphorus (P) supply in the root zone are essential for achieving high yield and P-use efficiency in maize production by manipulating the root morphology and arbuscular mycorrhizal (AM) fungi colonization. A major trade-off exists between root growth and AM colonization that is influenced by soil P supply intensity and space availability. However, how soil P manipulates the root morphological characteristics and AM colonization to compensate for the limitation of root-growth space induced by high-planting density is not clear. Therefore, pot experiments were conducted to investigate interactions between the root growth and AM fungi by optimizing soil P supply to compensate for limited root growth space induced by high-planting density. Similar shoot biomass and P uptake values were obtained in P200 (200 mg P kg−1 soil) under D = 40 (i.e., diameter of the pot is 40 cm) and P400 under D = 30, and similar values were obtained for root length, tap root length, root angle, lateral root density, and AM colonization. However, the improvement in P supply in the root zone, shoot biomass, and P uptake in P400 under D = 20 were lower than in P200 under D = 30, and there were no significant differences in the root parameters between P200 and P400 under D = 20; similarly, the root growth and AM colonization exhibited similar trends. These results suggest that optimizing P supply in the root zone to regulate the interaction between root morphological traits and AM colonization can compensate for limited root-growth space. Although P supply in the root zone increased after the root-growth space was compressed, it could not meet the P demand of maize; thus, to achieve the most efficient use of P under intensive high-density maize production, it is necessary to optimally coordinate root growth space and P supply in the root zone.

2013 ◽  
Vol 64 (9) ◽  
pp. 881 ◽  
Author(s):  
Chaoyuan Zheng ◽  
Junling Zhang ◽  
Xiaolin Li

Arbuscular mycorrhizal (AM) fungi are known to facilitate effective acquisition of phosphorus (P) by host plants in low P soils. However, the contribution of mycorrhizal traits to high P-use efficiency in modern-bred maize genotypes is still not clear. In the present study one backcross maize inbred line 224 (bred for high P-use efficiency) was used as the host plant associated with AM fungal species (Rhizophagus irregularis or Glomus mosseae) grown at a range of soil P treatments (10, 20, 30, 40, 50, 100 mg P kg–1, Experiment 1) or foliar P applications (0, 0.025%, 0.5% m/v, Experiment 2). The experiments were to test the hypothesis whether the change point of the mycorrhizal growth and P responsiveness of 224, as well as the expression of ZEAma;Pht1;6 was at or near the optimal P supply level. In addition, different AM inoculants might differ in regulating P uptake of the host. Our results indicated that inbred line 224 was highly responsive to mycorrhizal inoculation. In Experiment 1, root colonisation rate, hyphal length density and alkaline phosphatase increased with the increase of soil P supply level. However, the mycorrhizal growth response (MGR) and P accumulation in shoot (MPR) were greatly affected by soil P supply level and varied between the two fungal species. Maize plants exhibited higher MGR and MPR at lower P supply when inoculated with R. irregularis, and at intermediate P supply when inoculated with G. mosseae. In Experiment 2, shoot P uptake was significantly increased by foliar P supply and inoculation, whereas shoot growth was significantly affected by P supply and the interaction. The expression of the AM-inducible Pi transporter gene ZEAma;Pht1;6 was neither significantly affected by soil (except at 100 mg P kg–1, Experiment 1) or foliar P supply level, nor by fungal species. Root P uptake efficiency (RPUE) was generally greatly increased by mycorrhizal colonisation at all P supply levels in both experiments, and significant correlations were observed between mycorrhizal variables and RPUE in Experiment 1. Our results indicate that the formation of mycorrhizal association could increase RPUE and thus may be partly attributed to high P-use efficiency of inbred line 224. The different responsiveness of mycorrhizal fungi to soil-available P implies the importance for the development of precision strategies to optimise the potential function of AM fungi under different P fertilisation management regime in agricultural soils.


2008 ◽  
Vol 88 (3) ◽  
pp. 283-294 ◽  
Author(s):  
Christine P Landry ◽  
Chantal Hamel ◽  
Anne Vanasse

Ridge-tilled corn (Zea mays L.) could benefit from arbuscular mycorrhizal (AM) fungi. Under low soil disturbance, AM hyphal networks are preserved and can contribute to corn nutrition. A 2-yr study was conducted in the St. Lawrence Lowlands (Quebec, Canada) to test the effects of indigenous AM fungi on corn P nutrition, growth, and soil P in field cropped for 8 yr under ridge-tillage. Phosphorus treatments (0, 17, 35 kg P ha-1) were applied to AM-inhibited (AMI) (fungicide treated) and AM non-inhibited (AMNI) plots. Plant tissue and soil were sampled 22, 48 and 72 days after seeding (DAS). P dynamics was monitored in situ with anionic exchange membranes (PAEM) from seeding to the end of July. AMNI plants showed extensive AM colonization at all P rates. At 22 DAS, AMI plants had decreased growth in the absence of P inputs, while AMNI plants had higher dry mass (DM) and P uptake in unfertilized plots. The PAEM was lower in the AMNI unfertilized soils in 1998 and at all P rates in 1999, indicating an inverse relationship between P uptake and PAEM. At harvest, grain P content of AMNI plants was greater than that of AMI plants. In 1998, only AMI plants had decreased yield in the absence of P fertilization. In 1999, AMNI plants produced greater grain yield than AMI plants at all P rates. AM fungi improve the exploitation of soil P by corn thereby maintaining high yields while reducing crop reliance on P inputs in RT. Key words: Arbuscular mycorrhizae, ridge-tillage, soil P dynamics, corn, P nutrition


2003 ◽  
Vol 83 (4) ◽  
pp. 337-342 ◽  
Author(s):  
A. Liu ◽  
C. Hamel ◽  
S. H. Begna ◽  
B. L. Ma ◽  
D. L. Smith

The ability of arbuscular mycorrhizal (AM) fungi to help their host plant absorb soil P is well known, but little attention has been paid to the effect of AM fungi on soil P depletion capacity. A greenhouse experiment was conducted to assess, under different P levels, the effects of mycorrhizae on extractable soil P and P uptake by maize hybrids with contrasting phenotypes. The experiment had three factors, including two mycorrhizal treatments (mycorrhizal and non-mycorrhizal), three P fertilizer rates (0, 40, and 80 mg kg-1) and three maize hybrids [leafy normal stature (LNS), leafy reduced stature (LRS) and a conventional hybrid, Pioneer 3979 (P3979)]. Extractable soil P was determined after 3, 6 and 9 wk of maize growth. Plant biomass, P concentration and total P content were also determined after 9 wk of growth. Fertilization increased soil extractable P, plant biomass, P concentration in plants and total P uptake. In contrast to P3979, the LNS and LRS hybrids had higher biomass and total P content when mycorrhizal. Mycorrhizae had less influence on soil extractable P than on total P uptake by plants. The absence of P fertilization increased the importance of AM fungi for P uptake, which markedly reduced soil extractable P under AM plants during growth. This effect was strongest for LNS, the most mycorrhizae-dependent hybrid, intermediate for LRS, and not significant for the commercial hybrid P3979, which did not respond to AM inoculation. Key words: Arbuscular mycorrhizal fungi, extraradical hyphae, maize hybrid,plant biomass, P uptake, soil extractable P


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1919
Author(s):  
Terry J. Rose ◽  
Carolyn A. Raymond

A key driver of the current unsustainable global phosphorus (P) cycle is the removal of P from fields in harvested grains. Minimising the concentration of P in grains of staple cereal crops would contribute towards addressing the issue, but it is possible that reducing grain P concentration may impact the vigour of subsequent seedlings. We used a hydroponic method to obtain low- and high-P rice (Oryza sativa L.) seeds from plants grown under near-identical conditions, so that any differences in subsequent seedling growth were likely due to differences in seed P concentrations rather than other seed quality differences that may arise from growing mother plants under different conditions. Seedling biomass production and P uptake were then investigated using high- and low-P seed of four rice genotypes in a P-rich soil and a P-deficient soil in a pot study in a glasshouse. In the P-rich soil, with a history of P fertilisation, with P fertiliser banded below seeds at sowing at 20 kg P ha−1 on a pot surface area basis, seedling biomass and P uptake were significantly affected by genotype (p < 0.05) but not by seed P concentration. In the P-deficient Ferralsol, main effects of seed P concentration, genotype and P fertiliser treatment (nil P, banded P fertiliser, broadcast and incorporated P fertiliser) on seedling biomass were all significant (p < 0.01) with, a significant genotype × P fertiliser treatment interaction. Overall, low-P seed produced less biomass than high-P seed (0.059 vs. 0.067 g plant−1) and nil P fertiliser (0.057 g plant−1) resulted in less biomass than banded P fertiliser and broadcast P fertiliser (0.064 and 0.068 g plant−1, respectively). When two genotypes were re-grown in the P-deficient Ferralsol with P fertiliser banded under the seed at 20 kg P ha−1 there was a significant effect of genotype on shoot biomass (p < 0.001) but only a trend towards lower seedling biomass with low P seed compared to high P seed (p = 0.128). Overall, the results suggest that seed P concentration does not affect seedling vigour when external soil P fertility is sufficiently high, but in P-deficient soils seedling biomass production and P uptake can be reduced by 10–20%. Further research is required to determine whether agronomic interventions including seed P priming or biological seed dressings can mitigate any impacts of lower seed P concentration on seedling vigour in P-deficient soils.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Amos K. Quaye ◽  
Timothy A. Volk ◽  
Jeff J. Schoenau

The seasonal variations in soil nutrient supply and bioavailability were assessed in a willow biomass crop (Salix miyabeana, SX64) treated with 150 and 200 kg available N ha−1of commercial fertilizer (CF), biosolid compost (BC), dairy manure (DM), and control (CT0) at Delhi, NY. Plant root simulator probes were used to measure nutrient supply (inside) and bioavailability (outside) of root exclusion cylinders. Measurements were made in September 2008 and May, August, and October of 2009. Soil moisture content (θd)and foliar nutrient concentrations were also determined. The BC treatments increased soil P supply more than CF and CT0. The supply ofNH4+and K in the soil increased in August but their bioavailability increased in May and October. SoilNO3-and P supply and bioavailability were both high in May. Foliar N and K concentrations were significantly high in May and low in August which could be due to dilution effect caused by increased soil moisture foliar dry weight. Foliar P concentrations increased in September and October. The observed higher soilNO3-mineralization and plant uptake in May suggest that in high soilNO3-conditions willow biomass crops can level and minimize leaching out of the root zone into groundwater.


1984 ◽  
Vol 64 (2) ◽  
pp. 255-263 ◽  
Author(s):  
S. C. SHEPPARD ◽  
G. J. RACZ

The change in the extractability of soil phosphorus (P) in response to temperature was examined in 12 Manitoba soils. These soils varied in carbonate and P contents. The soil P was labelled with 32P to facilitate measurements. Sodium bicarbonate extractions, anion exchange resin extractions, P desorption curves and short-term plant uptake using wheat were used to measure P extractability. An increase in soil temperature increased the extractability of P. This was apparent for P extracted by NaHCO3 only in soils low in P. The P extracted by resin appeared to respond similarly but was quite variable. Effects of temperature on the desorption curve parameters were significant only in soils high in P. The latter may reflect the detection limits for P using the desorption curve extraction system. Plant uptake was closely correlated to root growth. Both increased markedly as temperature increased. However, in certain soils the increase in P uptake due to temperature was far greater than the corresponding increase in root growth. The estimates of the labile pool accessed by plants increased as temperature increased. The principle hypothesis, that the effect of temperature on P extractability changed from soil to soil, was confirmed. The only controlling soil factor that could be identified was the basic soil P content. Key words: Temperature, soil phosphorus, carbonated, non-carbonated, plant uptake, wheat


2016 ◽  
Vol 53 (1) ◽  
pp. 1-11 ◽  
Author(s):  
FERNANDO C. BACHIEGA ZAMBROSI ◽  
RAFAEL VASCONCELOS RIBEIRO ◽  
EDUARDO CARUSO MACHADO ◽  
JÚLIO CÉSAR GARCIA

SUMMARYThe shoot regrowth vigour of sugarcane varieties having contrasting phosphorus (P) efficiency was evaluated under varying soil P availability. The P-inefficient (IAC91–1099 and IACSP94–2101) and -efficient (IACSP94–2094 and IACSP95–5000) sugarcane varieties were grown under low (25 mg P kg−1 soil) or high (400 mg P kg−1 soil) P supply at planting. After 90 days (first cycle of growth), the shoots were harvested and regrowth was studied 70–75 days later by evaluating photosynthesis, leaf area formation, biomass production and P uptake. The shoot dry matter (DM) of sugarcane regrowth subjected to a low P supply was genotype-dependent, with the P-efficient varieties exhibiting greater values than the inefficient ones. This result was explained by the greater efficiency of IACSP94–2094 and IACSP95–5000 in acquiring P rather than P utilization efficiency for shoot biomass production. The root P stored during the first cycle of growth would represent only a minor fraction (< 20%) of the total P content in the shoots at the end of the regrowth period. Thus, we argue that the improved shoot P uptake of the P-efficient varieties was related to their ability to sustain P acquisition after harvesting rather than to the remobilization of root P reserves. Moreover, our data revealed that net CO2 assimilation per leaf area was not associated with differential performance among varieties under P deficiency, suggesting a more critical role of total leaf area in photosynthate supply for sugarcane regrowth. In conclusion, sugarcane regrowth is improved in P-efficient varieties under P deficiency conditions, a finding of practical relevance as such ability might benefit the productivity and the longevity of sugarcane ratoons in low P tropical soils.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liyuan Hou ◽  
Xiaofei Zhang ◽  
Gu Feng ◽  
Zheng Li ◽  
Yubin Zhang ◽  
...  

AbstractArbuscular mycorrhizal (AM) symbioses are an attractive means of improving the efficiency of soil phosphorus (P) that difficult to be used by plants and may provide a sustainable way of maintaining high yields while reducing P applications. However, quantifying the contribution of indigenous AM fungi on phosphorus uptake and yields of maize (Zea mays L.) under field conditions is not particularly clear. Mesh-barrier compartments were applied to monitor the distribution of hyphal P uptake throughout the experimental period under different planting densities and soil depths, over two consecutive years. AM symbioses enhanced plant P-acquisition efficiency, especially during the silking stage, and hyphae of AM fungi was assessed to contribution 19.4% at most to total available P content of soil. Moreover, the pattern of AM depletion of soil P generally matched shoot nutrient demand under the high planting density, which resulted in significantly increased yield in 2014. Although the hyphal length density was significantly decreased with soil depth, AM fungi still had high potential for P supply in deeper soil. It demonstrates the great potential of indigenous AM fungi to maize productivity in the high-yield area of China, and it would further provide the possibility of elimination P fertilizer applications to maintain high yields.


2001 ◽  
Vol 28 (5) ◽  
pp. 391 ◽  
Author(s):  
Sarah M. Ayling ◽  
Sally E. Smith ◽  
F. Andrew Smith

The effect of colonisation by arbuscular mycorrhizal (AM) fungi on the relationship between phosphorus (P) uptake and root membrane electric potential difference (p.d.) was investigated in leek (Allium porrum L.). Plants were grown, with or without the AM fungus Scutellospora calospora (Nicolson and Gerdemann) Walker and Sanders, in soil. P uptake and root p.d. were correlated; plants with the highest P concentration in the shoot had the most negative p.d. This relationship was strong in non-mycorrhizal leeks (r2 = 84–98%), but weaker in mycorrhizal leeks (r2 = 55–64%), consistent with the idea that in mycorrhizal roots the fungal hyphae are the principal site of P uptake.


2011 ◽  
Vol 62 (6) ◽  
pp. 467 ◽  
Author(s):  
Qifu Ma ◽  
Zed Rengel ◽  
Kadambot H. M. Siddique

Heterogeneity of soil nutrients, particularly phosphorus (P), is widespread in modern agriculture due to increased adoption of no-till farming, but P-use efficiency and related physiological processes in plants grown in soils with variable distribution of nutrients are not well documented. In a glasshouse column experiment, wheat (Triticum aestivum L.) and white lupin (Lupinus albus L.) were subjected to 50 mg P/kg at 7–10 cm depth (hotspot P) or 5 mg P/kg in the whole profile (uniform P), with both treatments receiving the same amount of P. Measurements were made of plant growth, gas exchange, P uptake, and root distribution. Plants with hotspot P supply had more biomass and P content than those with uniform P supply. The ratios of hotspot to uniform P supply for shoot parameters, but not for root parameters, were lower in L. albus than wheat, indicating that L. albus was better able than wheat to acquire and utilise P from low-P soil. Cluster roots in L. albus were enhanced by low shoot P concentration but suppressed by high shoot P concentration. Soil P supply decreased root thickness and the root-to-shoot ratio in wheat but had little effect on L. albus. The formation of cluster roots in low-P soil and greater proliferation and surface area of roots in the localised, P-enriched zone in L. albus than in wheat would increase plant P use in heterogeneous soils. L. albus also used proportionally less assimilated carbon than wheat for root growth in response to soil P deficiency. The comparative advantage of each strategy by wheat and L. albus for P-use efficiency under heterogeneous P supply may depend on the levels of P in the enriched v. low-P portions of the root-zone and other soil constraints such as water, nitrogen, or potassium supply.


Sign in / Sign up

Export Citation Format

Share Document