scholarly journals Comparative Transcriptome Profiling Reveals Defense-Related Genes Against Ralstonia solanacearum Infection in Tobacco

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoying Pan ◽  
Junbiao Chen ◽  
Aiguo Yang ◽  
Qinghua Yuan ◽  
Weicai Zhao ◽  
...  

Bacterial wilt (BW) caused by Ralstonia solanacearum (R. solanacearum), is a vascular disease affecting diverse solanaceous crops and causing tremendous damage to crop production. However, our knowledge of the mechanism underlying its resistance or susceptibility is very limited. In this study, we characterized the physiological differences and compared the defense-related transcriptomes of two tobacco varieties, 4411-3 (highly resistant, HR) and K326 (moderately resistant, MR), after R. solanacearum infection at 0, 10, and 17 days after inoculation (dpi). A total of 3967 differentially expressed genes (DEGs) were identified between the HR and MR genotypes under mock condition at three time points, including1395 up-regulated genes in the HR genotype and 2640 up-regulated genes in the MR genotype. Also, 6,233 and 21,541 DEGs were induced in the HR and MR genotypes after R. solanacearum infection, respectively. Furthermore, GO and KEGG analyses revealed that DEGs in the HR genotype were related to the cell wall, starch and sucrose metabolism, glutathione metabolism, ABC transporters, endocytosis, glycerolipid metabolism, and glycerophospholipid metabolism. The defense-related genes generally showed genotype-specific regulation and expression differences after R. solanacearum infection. In addition, genes related to auxin and ABA were dramatically up-regulated in the HR genotype. The contents of auxin and ABA in the MR genotype were significantly higher than those in the HR genotype after R. solanacearum infection, providing insight into the defense mechanisms of tobacco. Altogether, these results clarify the physiological and transcriptional regulation of R. solanacearum resistance infection in tobacco, and improve our understanding of the molecular mechanism underlying the plant-pathogen interaction.

Botany ◽  
2018 ◽  
Vol 96 (11) ◽  
pp. 749-765 ◽  
Author(s):  
Kandaswamy Rekha ◽  
Ramasamy Mohan Kumar ◽  
K. Ilango ◽  
Arunraj Rex ◽  
Balasundaram Usha

Bacillus subtilis, a gram-positive soil bacterium, is widely used as a plant-growth-promoting agent. However, how Bacillus initially colonizes rice roots and evades the plant primary defense mechanisms, and how it influences root secretion of phytochemicals for further colonization remain obscure. To get an insight into how a plant perceives the bacterium upon initial root colonization, a microarray analysis was performed using rice roots treated with a rice rhizosphere isolate, B. subtilis RR4. About 891 transcripts (255 up-regulated and 636 down-regulated) were differentially expressed, indicating that the bacteria reprogram the plant to colonize it. In our experiments, RR4 mainly caused the suppression of transcripts encoding defense response enzymes such as chitinase, cell-wall-modifying enzymes such as pectinesterase, and genes associated with transport/exudation of phytochemicals, signifying that the bacteria modulate the gene expression of the plant to facilitate its colonization. Genes that regulate secondary metabolite production were up-regulated. Although the defense response genes in rice roots were suppressed initially, they were induced gradually at 4 and 10 days post-treatment. This was accompanied by an increased level of salicylic acid in the colonized rice roots. Thus, our results show that B. subtilis alters the transcriptome of rice roots for initial colonization by initially lowering the plants’ defenses, limiting root exudation and active cell growth, but boosting the plants’ defenses at a later stage.


2021 ◽  
Vol 81 ◽  
pp. 102246
Author(s):  
Zhong-li Liu ◽  
Shuai Wang ◽  
Xue-peng Cai ◽  
Qiao-ying Zeng

Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1910
Author(s):  
Bailey Engle ◽  
Molly Masters ◽  
Jane Ann Boles ◽  
Jennifer Thomson

Fat deposition is important to carcass value and some palatability characteristics. Carcasses with higher USDA quality grades produce more value for producers and processors in the US system and are more likely to have greater eating satisfaction. Using genomics to identify genes impacting marbling deposition provides insight into muscle biochemistry that may lead to ways to better predict fat deposition, especially marbling and thus quality grade. Hereford steers (16) were managed the same from birth through harvest after 270 days on feed. Samples were obtained for tenderness and transcriptome profiling. As expected, steaks from Choice carcasses had a lower shear force value than steaks from Select carcasses; however, steaks from Standard carcasses were not different from steaks from Choice carcasses. A significant number of differentially expressed (DE) genes was observed in the longissimus lumborum between Choice and Standard carcass RNA pools (1257 genes, p < 0.05), but not many DE genes were observed between Choice and Select RNA pools. Exploratory analysis of global muscle tissue transcriptome from Standard and Choice carcasses provided insight into muscle biochemistry, specifically the upregulation of extracellular matrix development and focal adhesion pathways and the downregulation of RNA processing and metabolism in Choice versus Standard. Additional research is needed to explore the function and timing of gene expression changes.


2015 ◽  
Vol 35 (3) ◽  
pp. 561-571 ◽  
Author(s):  
Wenxian Liu ◽  
Zhengshe Zhang ◽  
Shuangyan Chen ◽  
Lichao Ma ◽  
Hucheng Wang ◽  
...  

2018 ◽  
Vol 174 ◽  
pp. 1234-1239 ◽  
Author(s):  
Arivalagan Pugazhendhi ◽  
Gowri Manogari Boovaragamoorthy ◽  
Kuppusamy Ranganathan ◽  
Mu Naushad ◽  
Thamaraiselvi Kaliannan

2013 ◽  
Vol 103 (10) ◽  
pp. 1028-1034 ◽  
Author(s):  
Carole Lambert ◽  
Ian Li Kim Khiook ◽  
Sylvia Lucas ◽  
Nadège Télef-Micouleau ◽  
Jean-Michel Mérillon ◽  
...  

Wood diseases like Esca are among the most damaging afflictions in grapevine. The defense mechanisms in this plant–pathogen interaction are not well understood. As some grapevine cultivars have been observed to be less susceptible to Esca than others, understanding the factors involved in this potentially stronger defense response can be of great interest. To lift part of this veil, we elicited Vitis vinifera plants of two cultivars less susceptible to Esca (‘Merlot’ and ‘Carignan’) and of one susceptible cultivar (‘Cabernet Sauvignon’), and monitored their defense responses at the leaf level. Our model of elicitation consisted in grapevine cuttings absorbing a culture filtrate of one causal agent of Esca, Phaemoniella chlamydospora. This model might reflect the early events occurring in Esca-affected grapevines. The two least susceptible cultivars showed an earlier and stronger defense response than the susceptible one, particularly with regard to induction of the PAL and STS genes, and a higher accumulation of stilbene compounds and some pathogenesis-related proteins.


2021 ◽  
Author(s):  
Ye Chen ◽  
Xiang Zhou ◽  
Kai Guo ◽  
Sha-Ni Chen ◽  
Xiu Su

Abstract Background: The pine wood nematode Bursaphelenchus xylophilus is a worldwide destructive pest on Pinus trees and lacks effective control measures. Screening nematotoxic protein toxins has been conducted to develop new strategies for nematode control. Results: The present study provided initial insights into the responses of B. xylophilus exposed to a nematocidal cytolytic-like protein (CytCo) based on the transcriptome profiling. A large set of differentially expressed genes (1266 DEGs) were found related to nematode development, reproduction, metabolism, motion, and immune system. In response to the toxic protein, B. xylophilus upregulated DEGs encoding cuticle collagens, transporters, and cytochrome P450. In addition, many DEGs related to cell death, lipid metabolism, major sperm proteins, proteinases/peptidases, phosphatases, kinases, virulence factors, and transthyretin-like proteins were downregulated. And Gene Ontology enrichment analysis showed that CytCo treatment significantly affecting DEGs functioning in muscle contraction, lipid localization, MAPK cascade. The pathway richness of Kyoto Encyclopedia of Genes and Genomes showed that the DEGs were concentrated in lysosome and fatty acid degradation. The weight co-expression network analysis indicated that the hub genes affected by CytCo were associated with the nematode cuticular collagen. Conclusions: These results showed that the CytCo protein toxin could interference gene expression to produce multiple nematotoxic effects, providing initial insight into its control potential of pine wood nematode.


Genome ◽  
2019 ◽  
Vol 62 (12) ◽  
pp. 833-847
Author(s):  
Sapna Thakur ◽  
Shruti Choudhary ◽  
Preeti Dubey ◽  
Pankaj Bhardwaj

Arsenic is a widespread toxic metalloid that is classified as a class I carcinogen known to cause adverse health effects in humans. In the present study, we investigated arsenic accumulation potential and comparative gene expression in Indian mustard. The amount of arsenic accumulated in shoots varied in the range of 15.99–1138.70 mg/kg on a dry weight basis among five cultivars. Comparative expression analysis revealed 10 870 significantly differentially expressed genes mostly belonging to response to stress, metabolic processes, signal transduction, transporter activity, and transcription regulator activity to be up-regulated, while most of the genes involved in photosynthesis, developmental processes, and cell growth were found to be down-regulated in arsenic-treated tissues. Further, pathway analysis using the KEGG Automated Annotation server (KAAS) revealed a large-scale reprogramming of genes involved in genetic and environmental information processing pathways. Top pathways with maximum KEGG orthology hits included carbon metabolism (2.5%), biosynthesis of amino acids (2.1%), plant hormone signal transduction (1.4%), and glutathione metabolism (0.6%). A transcriptomic investigation to understand the arsenic accumulation and detoxification in Indian mustard will not only help to improve its phytoremediation efficiency but also add to the control measures required to check bioaccumulation of arsenic in the food chain.


Sign in / Sign up

Export Citation Format

Share Document