scholarly journals Integrative Analysis of the Metabolome and Transcriptome of a Cultivated Pepper and Its Wild Progenitor Chiltepin (Capsicum annuum L. var. glabriusculum) Revealed the Loss of Pungency During Capsicum Domestication

2022 ◽  
Vol 12 ◽  
Author(s):  
Bipei Zhang ◽  
Fang Hu ◽  
Xiaotao Cai ◽  
Jiaowen Cheng ◽  
Ying Zhang ◽  
...  

Pungency is a unique characteristic of chili peppers (Capsicum spp.) caused by capsaicinoids. The evolutionary emergence of pungency is thought to be a derived trait within the genus Capsicum. However, it is not well-known how pungency has varied during Capsicum domestication and specialization. In this study, we applied a comparative metabolomics along with transcriptomics analysis to assess various changes between two peppers (a mildly pungent cultivated pepper BB3 and its hot progenitor chiltepin) at four stages of fruit development, focusing on pungency variation. A total of 558 metabolites were detected in two peppers. In comparison with chiltepin, capsaicinoid accumulation in BB3 was almost negligible at the early stage. Next, 412 DEGs associated with the capsaicinoid accumulation pathway were identified through coexpression analysis, of which 18 genes (14 TFs, 3 CBGs, and 1 UGT) were deemed key regulators due to their high coefficients. Based on these data, we speculated that downregulation of these hub genes during the early fruit developmental stage leads to a loss in pungency during Capsicum domestication (from chiltepin to BB3). Of note, a putative UDP-glycosyltransferase, GT86A1, is thought to affect the stabilization of capsaicinoids. Our results lay the foundation for further research on the genetic diversity of pungency traits during Capsicum domestication and specialization.

2015 ◽  
pp. 395-401 ◽  
Author(s):  
M.F. Nascimento ◽  
N.F.F. Nascimento ◽  
E.R. Rêgo ◽  
C.H. Bruckner ◽  
F.L. Finger ◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 543c-543
Author(s):  
Ami N. Erickson ◽  
Albert H. Markhart

Fruit yield reduction due to high temperatures has been widely observed in Solanaceous crops. Our past experiments have demonstrated that Capsicum annuum cultivars Ace and Bell Boy completely fail to produce fruit when grown at constant 33 °C. However, flowers are produced, continually. To determine which stages of flower development are sensitive to high temperatures, pepper buds, ranging in size from 1 mm to anthesis, were exposed to high temperatures for 6 hr, 48 hr, 5 days, or for the duration of the experiment. Fruit set for each bud size was determined. Exposure to high temperatures at anthesis and at the 2-mm size stage for 2 or more days significantly reduced fruit production. To determine whether inhibition of pollination, inhibition of fertilization, and/or injury to the female or male structures prevents fruit production at high temperatures, flowers from pepper cultivars Ace and Bell Boy were grown until flowers on the 8th or 9th node were 11 mm in length. Plants were divided between 25 °C and 33 °C constant growth chambers for 2 to 4 days until anthesis. At anthesis, flowers from both treatments were cross-pollinated in all combination, and crosses were equally divided between 33 or 25 °C growth chambers until fruit set or flowers abscised. All flower crosses resulted in 80% to 100% fruit set when post-pollination temperatures were 25 °C. However, post-pollination temperatures of 33 °C significantly reduced fruit production. Reduced fruit set by flowers exposed to high temperatures during anthesis and pollination is not a result of inviable pollen or ovule, but an inhibition of fertilization or initial fruit development.


Toxin Reviews ◽  
2018 ◽  
Vol 39 (4) ◽  
pp. 361-370
Author(s):  
Ozgur Kuzukiran ◽  
Ayhan Filazi ◽  
Begum Yurdakok-Dikmen ◽  
Gorkem Ozansoy-Cengiz ◽  
Ismayil Safa Gurcan ◽  
...  

Hereditas ◽  
2021 ◽  
Vol 158 (1) ◽  
Author(s):  
Haoming Li ◽  
Linqing Zou ◽  
Jinhong Shi ◽  
Xiao Han

Abstract Background Alzheimer’s disease (AD) is a fatal neurodegenerative disorder, and the lesions originate in the entorhinal cortex (EC) and hippocampus (HIP) at the early stage of AD progression. Gaining insight into the molecular mechanisms underlying AD is critical for the diagnosis and treatment of this disorder. Recent discoveries have uncovered the essential roles of microRNAs (miRNAs) in aging and have identified the potential of miRNAs serving as biomarkers in AD diagnosis. Methods We sought to apply bioinformatics tools to investigate microarray profiles and characterize differentially expressed genes (DEGs) in both EC and HIP and identify specific candidate genes and pathways that might be implicated in AD for further analysis. Furthermore, we considered that DEGs might be dysregulated by miRNAs. Therefore, we investigated patients with AD and healthy controls by studying the gene profiling of their brain and blood samples to identify AD-related DEGs, differentially expressed miRNAs (DEmiRNAs), along with gene ontology (GO) analysis, KEGG pathway analysis, and construction of an AD-specific miRNA–mRNA interaction network. Results Our analysis identified 10 key hub genes in the EC and HIP of patients with AD, and these hub genes were focused on energy metabolism, suggesting that metabolic dyshomeostasis contributed to the progression of the early AD pathology. Moreover, after the construction of an miRNA–mRNA network, we identified 9 blood-related DEmiRNAs, which regulated 10 target genes in the KEGG pathway. Conclusions Our findings indicated these DEmiRNAs having the potential to act as diagnostic biomarkers at an early stage of AD.


2021 ◽  
Vol 9 ◽  
Author(s):  
Heather R. Kates ◽  
Fernando López Anido ◽  
Guillermo Sánchez-de la Vega ◽  
Luis E. Eguiarte ◽  
Pamela S. Soltis ◽  
...  

Studies of domestication genetics enrich our understanding of how domestication shapes genetic and morphological diversity. We characterized patterns of genetic variation in two independently domesticated pumpkins and their wild progenitors to assess and compare genetic consequences of domestication. To compare genetic diversity pre- and post-domestication and to identify genes targeted by selection during domestication, we analyzed ∼15,000 SNPs of 48 unrelated accessions, including wild, landrace, and improved lines for each of two pumpkin species, Cucurbita argyrosperma and Cucurbita maxima. Genetic diversity relative to its wild progenitor was reduced in only one domesticated subspecies, C. argyrosperma ssp. argyrosperma. The two species have different patterns of genetic structure across domestication status. Only 1.5% of the domestication features identified for both species were shared between species. These findings suggest that ancestral genetic diversity, wild-crop gene flow, and domestication practices shaped the genetic diversity of two similar Cucurbita crops in different ways, adding to our understanding of how genetic diversity changes during the processes of domestication and how trait improvement impacts the breeding potential of modern crops.


1981 ◽  
Vol 50 (3) ◽  
pp. 287-296 ◽  
Author(s):  
Tsutomu TAMURA ◽  
Hirokazu FUKUI ◽  
Shigeru IMAKAWA ◽  
Yoshio MINO

2021 ◽  
Author(s):  
Chao Xiong ◽  
Brajesh K. Singh ◽  
Ji-Zheng He ◽  
Yan-Lai Han ◽  
Pei-Pei Li ◽  
...  

Abstract BackgroundPlants live with diverse microbial communities which profoundly affect multiple facets of host performance such as nutrition acquisition, disease suppression and productivity, but if and how host development impacts the assembly, functions and microbial interactions of crop microbiomes are poorly understood. Here we examined both bacterial and fungal communities across soils (rhizosphere and bulk soil), plant epiphytic and endophytic niches (phylloplane, rhizoplane, leaf and root endosphere), and plastic leaf of fake plant (representing environment-originating microbes) at three developmental stages of maize at two contrasting sites, and further explored the potential function of phylloplane microbiomes based on metagenomics.ResultsOur results suggested that plant developmental stage had a much stronger influence on the microbial diversity, composition and interkingdom networks in plant compartment niches than in soils, with the strongest effect in the phylloplane. Air (represented by fake plants) was an important source of phylloplane microbiomes which were co-shaped by both plant development and seasonal environmental factors. Further, we demonstrated that bacterial and fungal communities in plant compartment niches exhibited contrasting response to host developmental stages, with higher alpha diversity and stronger deterministic assembly within bacterial microbiomes at the early stage but a similar pattern within mycobiomes at the late stage. Moreover, we found that bacterial taxa played a more important role in microbial interkingdom network and crop yield prediction at the early stage, while fungal taxa did so at the late stage. Metagenomic analyses further indicated that phylloplane microbiomes possessed higher functional diversity and functional genes involved in nutrient provision and disease resistance at the early stage than the late stage. ConclusionsOur results suggest that host developmental stage profoundly influences plant microbiome assembly and functions, and the bacterial and fungal microbiomes take a differentiated ecological role at different plant development stages. This study provides empirical evidence for host exerting strong effect on plant microbiomes by deterministic selection to meet the physiological requirement of plant developmental stages. These findings have implications for the development of future tools to manipulate microbiome for sustainable increase in primary productivity.


2020 ◽  
Vol 21 (5) ◽  
Author(s):  
Zulfikar D Sahid ◽  
MUHAMAD SYUKUR ◽  
AWANG MAHARIJAYA

Abstract. Sahid ZD, Syukur M, Maharijaya A. 2020. Genetic diversity of capsaicin content, quantitative, and yield component in chili (Capsicum annuum) and their F1 hybrid. Biodiversitas 21: 2251-2257. Chili (Capsicum annuum L.) is one of the horticultural plants that have many benefits. The benefit of chili was determined by pungency level of its fruit. Pungency level of the chili is due to the capsaicin content in fruit. Information about the genetic diversity of capsaicin is still rarely available. The aims of this study were to obtain diversity information on quantitative, yield component, and capsaicin content, and to analyze the correlation among chili genotypes based on their morphological characters. This study used Randomized Complete Block Design with three replications. The genetic material used in this study consisted of 21 genotypes consisting of 6 genotypes of chili elders and 15 hybrid F1 genotypes resulting from their crossing. Six genotypes of the chili parents are C5, F6074, F9160291, Yuni, Bara, and Giant. 15 hybrid F1 genotypes used in this study are C5 x Bara, C5 x F6074, C5 x Yuni, C5 x Giant, C5 x F9160291, Bara x F6074, Bara x Yuni, Bara x Giant, Bara x F9160291, F6074 x Yuni, F6074 x Giant, F6074 x F9160291, Yuni x Giant, Yuni x F9160291, and Giant x F9160291. The observation was made on the variables of quantitative, yield, and capsaicin components on chili. The results showed that the highest capsaicin content only was found in Bara x F9160291. The results of scatterplot analysis showed that the highest capsaicin and yield component was found in BaraxF6074 and C5 x Yuni genotype. The results of cluster analysis showed that chili was clustered into three color groups. The character of capsaicin content is negatively correlated and very different from fruit weight, fruit diameter, fruit length, thick fruit flesh, total amount of fruit per plant, and fruit weight per plant.


PLoS ONE ◽  
2016 ◽  
Vol 11 (7) ◽  
pp. e0156969 ◽  
Author(s):  
Rachel P. Naegele ◽  
Jenna Mitchell ◽  
Mary K. Hausbeck

Sign in / Sign up

Export Citation Format

Share Document