scholarly journals CsWRKY25 Improves Resistance of Citrus Fruit to Penicillium digitatum via Modulating Reactive Oxygen Species Production

2022 ◽  
Vol 12 ◽  
Author(s):  
Wenjun Wang ◽  
Ting Li ◽  
Qi Chen ◽  
Shixiang Yao ◽  
Lili Deng ◽  
...  

WRKY transcription factors (TFs) play crucial roles in the regulation of biotic stress. Citrus is the most productive fruit in the world. It is of great value to investigate the regulatory molecular mechanism of WRKYs in improving disease resistance. In this research, the transcription level of CsWRKY25 was upregulated in P. digitatum infected citrus peel, and CsWRKY25 activated the expression of three target genes (RbohB, RbohD, and PR10). Besides, the Agrobacterium-mediated transient overexpression of CsWRKY25 has also been shown to enhance resistance to P. digitatum in citrus, and caused the accumulation of hydrogen peroxide and lignin. The accumulation of ROS also activated the antioxidant system, the catalase (CAT), peroxidase (POD), and cinnamyl alcohol dehydrogenase (CAD) genes were significant upregulated, leading to activation of antioxidant enzymes. In addition, the up-regulated expression of MPK5 and MPK6 genes suggested that the regulatory role of CsWRKY25 might be related to the phosphorylation process. In conclusion, CsWRKY25 could enhance the resistance to P. digitatum via modulating ROS production and PR genes in citrus peel.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4593-4593
Author(s):  
Cheng Liu ◽  
Margareta Andersson ◽  
Dawei Xu ◽  
Hans-Erik Claesson ◽  
Magnus Bjorkholm ◽  
...  

Abstract Signal transducer and activator of transcription 6 (STAT6) plays a central role in interleukin (IL)-4 and -13 signaling. Upon binding of the cognate receptors by these cytokines, STAT6 becomes phosphorylated by Jak family kinases and subsequently translocates to the nucleus where transcription of its target genes is regulated. Expression of IL-13 and its receptor are common features of Hodgkin lymphoma (HL) tumor cells, the so-called Hodgkin Reed-Sternberg (H-RS) cells, in which this cytokine has been shown to act as an autocrine growth factor. Consequently, constitutively phosphorylated STAT6 with a nuclear localization is a common and distinctive feature of H-RS cells in classical HL. We knocked down STAT6 expression in the HL cell line L1236 with small interfering RNA (siRNA) and found that inhibition of STAT6 activity results in cell growth inhibition, decreased viability and increased apoptosis. The results depict a central role of STAT6 in the growth of H-RS cells and indicate that STAT6 could be a potential target for therapeutic intervention in HL. Moreover, in order to identify the target genes of this transcription factor in H-RS cells, a combined approach of RNA interference and microarray is performed and the results will be presented.


Blood ◽  
2003 ◽  
Vol 102 (3) ◽  
pp. 1028-1034 ◽  
Author(s):  
Stephan Mathas ◽  
Andreas Lietz ◽  
Martin Janz ◽  
Michael Hinz ◽  
Franziska Jundt ◽  
...  

Abstract Arsenic can induce apoptosis and is an efficient drug for the treatment of acute promyelocytic leukemia. Currently, clinical studies are investigating arsenic as a therapeutic agent for a variety of malignancies. In this study, Hodgkin/Reed-Sternberg (HRS) cell lines served as model systems to characterize the role of nuclear factor–κB (NF-κB) in arsenic-induced apoptosis. Arsenic rapidly down-regulated constitutive IκB kinase (IKK) as well as NF-κB activity and induced apoptosis in HRS cell lines containing functional IκB proteins. In these cell lines, apoptosis was blocked by inhibition of caspase-8 and caspase-3–like activity. Furthermore, arsenic treatment down-regulated NF-κB target genes, including tumor necrosis factor-αreceptor–associated factor 1 (TRAF1), c-IAP2, interleukin-13 (IL-13), and CCR7. In contrast, cell lines with mutated, functionally inactive IκB proteins or with a weak constitutive IKK/NF-κB activity showed no alteration of the NF-κB activity and were resistant to arsenic-induced apoptosis. A direct role of the NF-κB pathway in arsenic-induced apoptosis is shown by transient overexpression of NF-κB–p65 in L540Cy HRS cells, which protected the cells from arsenic-induced apoptosis. In addition, treatment of NOD/SCID mice with arsenic trioxide induced a dramatic reduction of xenotransplanted L540Cy Hodgkin tumors concomitant with NF-κB inhibition. We conclude that inhibition of NF-κB contributes to arsenic-induced apoptosis. Furthermore, pharmacologic inhibition of the IKK/NF-κB activity might be a powerful treatment option for Hodgkin lymphoma.


2020 ◽  
Vol 71 (10) ◽  
pp. 3066-3079 ◽  
Author(s):  
Xiaojuan Liu ◽  
Chenning Zhao ◽  
Qin Gong ◽  
Yue Wang ◽  
Jinping Cao ◽  
...  

Abstract Polymethoxylated flavones (PMFs), which accumulate exclusively in fruit peel of citrus, play important physiological and pharmacological roles but the genetic basis for the methylation of flavonoids has not been fully elucidated in citrus. Here we characterize a caffeoyl-CoA O-methyltransferase-like enzyme, designated CrOMT1. The expression pattern of CrOMT1 was highly correlated with the concentration of the three major PMFs in two different citrus fruit tissues during fruit maturation. Exposure of fruit to UV-B radiation sharply increased the level of CrOMT1 transcripts and also led to the accumulation of three PMFs. The potential role of CrOMT1 was studied by testing the catalytic activity of recombinant CrOMT1 with numerous possible substrates in vitro. The enzyme could most efficiently methylate flavones with neighboring hydroxy moieties, with high catalytic efficiencies found with 6-OH- and 8-OH-containing compounds, preferences that correspond precisely with the essential methylation sites involved in the synthesis of the three naturally occurring PMFs in Citrus reticulata. This indicates that CrOMT1 is capable of in vitro methylation reactions required to synthesize PMFs in vivo. Furthermore, transient overexpression of CrOMT1 increased levels of the three major PMFs in fruit, indicating that CrOMT1 is likely to play an essential role in the biosynthesis of PMFs in citrus.


2020 ◽  
Vol 26 ◽  
Author(s):  
Yini Ma ◽  
Xiu Cao ◽  
Guojuan Shi ◽  
Tianlu Shi

: MicroRNAs (miRNAs) play a vital role in the onset and development of many diseases, including cancers. Emerging evidence shows that numerous miRNAs have the potential to be used as diagnostic biomarkers for cancers, and miRNA-based therapy may be a promising therapy for the treatment of malignant neoplasm. MicroRNA-145 (miR-145) has been considered to play certain roles in various cellular processes, such as proliferation, differentiation and apoptosis, via modulating expression of direct target genes. Recent reports show that miR-145 participates in the progression of digestive system cancers, and plays crucial and novel roles for cancer treatment. In this review, we summarize the recent knowledge concerning the function of miR-145 and its direct targets in digestive system cancers. We discuss the potential role of miR-145 as valuable biomarkers for digestive system cancers and how miR-145 regulates these digestive system cancers via different targets to explore the potential strategy of targeting miR-145.


Author(s):  
Ishita Sharma ◽  
Tapan Behl ◽  
Simona Bungau ◽  
Monika Sachdeva ◽  
Arun Kumar ◽  
...  

Abstract:: Angina pectoris, associated with coronary artery disease, a cardiovascular disease where, pain is caused by adverse oxygen supply in myocardium, resulting in contractility and discomfort in chest. Inflammasomes, triggered by stimuli due to infection and cellular stress have identified to play a vital role in the progression of cardiovascular disorders and thus, causing various symptoms like angina pectoris. Nlrp3 inflammasome, a key contributor in the pathogenesis of angina pectoris, requires activation and primary signaling for the commencement of inflammation. Nlrp3 inflammasome elicit out an inflammatory response by emission of pro inflammatory cytokines by ROS (reactive oxygen species) production, mobilization of K+ efflux and Ca2+ and by activation of lysosome destabilization that eventually causes pyroptosis, a programmed cell death process. Thus, inflammasome are considered to be one of the factors involved in the progression of coronary artery diseases and have an intricate role in development of angina pectoris.


2020 ◽  
Vol 15 ◽  
Author(s):  
Na Wang ◽  
Yukun Li ◽  
Sijing Liu ◽  
Liu Gao ◽  
Chang Liu ◽  
...  

Background: Recent studies revealed that the hypoglycemic hormone, glucagon-like peptide-1 (GLP-1), acted as an important modulator in osteogenesis of bone marrow derived mesenchymal stem cells (BMSCs). Objectives: The aim of this study was to identify the specific microRNA (miRNA) using bioinformatics analysis and validate the presence of differentially expressed microRNAs with their target genes after GLP-1 receptor agonist (GLP-1RA) administration involved in ostogenesis of BMSCs. Methods: MiRNAs were extracted from BMSCs after 5 days’ treatment and sent for high-throughput sequencing for differentially expressed (DE) miRNAs analyses. Then the expression of the DE miRNAs verified by the real-time RT-PCR analyses. Target genes were predicted, and highly enriched GOs and KEGG pathway analysis were conducted using bioinformatics analysis. For the functional study, two of the target genes, SRY (sex determining region Y)-box 5 (SOX5) and G protein-coupled receptor 84 (GPR84), were identified. Results: A total of 5 miRNAs (miRNA-509-5p, miRNA-547-3p, miRNA-201-3p, miRNA-201-5p, and miRNA-novel-272-mature) were identified differentially expressed among groups. The expression of miRNA-novel-272-mature were decreased during the osteogenic differentiation of BMSCs, and GLP-1RA further decreased its expression. MiRNA-novel-272-mature might interact with its target mRNAs to enhance osteogenesis. The lower expression of miRNA-novel-272-mature led to an increase in SOX5 and a decrease in GPR84 mRNA expression, respectively. Conclusions: Taken together, these results provide further insights to the pharmacological properties of GLP-1RA and expand our knowledge on the role of miRNAs-mRNAs regulation network in BMSCs’ differentiation.


Author(s):  
Shruthi Sanjitha Sampath ◽  
Sivaramakrishnan Venkatabalsubramanian ◽  
Satish Ramalingam

: MicroRNAs regulate gene expression at the posttranscriptional level by binding to the mRNA of their target genes. The dysfunction of miRNAs is strongly associated with the inflammation of the colon. Besides, some microRNAs are shown to suppress tumours while others promote tumour progression and metastasis. Inflammatory bowel diseases include Crohn’s disease and Ulcerative colitis which increase the risk factor for inflammation-associated colon cancer. MicroRNAs are shown to be involved in gastrointestinal pathologies, by targeting the transcripts encoding proteins of the intestinal barrier and their regulators that are associated with inflammation and colon cancer. Detection of these microRNAs in the blood, serum, tissues, faecal matter, etc will enable us to use these microRNAs as biomarkers for early detection of the associated malignancies and design novel therapeutic strategies to overcome the same. Information on MicroRNAs can be applied for the development of targeted therapies against inflammation-mediated colon cancer.


1999 ◽  
Vol 19 (1) ◽  
pp. 495-504 ◽  
Author(s):  
John Sok ◽  
Xiao-Zhong Wang ◽  
Nikoleta Batchvarova ◽  
Masahiko Kuroda ◽  
Heather Harding ◽  
...  

ABSTRACT CHOP (also called GADD153) is a stress-inducible nuclear protein that dimerizes with members of the C/EBP family of transcription factors and was initially identified as an inhibitor of C/EBP binding to classic C/EBP target genes. Subsequent experiments suggested a role for CHOP-C/EBP heterodimers in positively regulating gene expression; however, direct evidence that this is the case has so far not been uncovered. Here we describe the identification of a positively regulated direct CHOP-C/EBP target gene, that encoding murine carbonic anhydrase VI (CA-VI). The stress-inducible form of the gene is expressed from an internal promoter and encodes a novel intracellular form of what is normally a secreted protein. Stress-induced expression of CA-VI is both CHOP and C/EBPβ dependent in that it does not occur in cells deficient in either gene. A CHOP-responsive element was mapped to the inducibleCA-VI promoter, and in vitro footprinting revealed binding of CHOP-C/EBP heterodimers to that site. Rescue of CA-VIexpression in c/ebpβ−/− cells by exogenous C/EBPβ and a shorter, normally inhibitory isoform of the protein known as LIP suggests that the role of the C/EBP partner is limited to targeting the CHOP-containing heterodimer to the response element and points to a preeminent role for CHOP in CA-VI induction during stress.


Sign in / Sign up

Export Citation Format

Share Document