scholarly journals Brainless Walking: Animal Gaits Emerge From an Actuator Characteristic

2021 ◽  
Vol 8 ◽  
Author(s):  
Yoichi Masuda ◽  
Keisuke Naniwa ◽  
Masato Ishikawa ◽  
Koichi Osuka

In this study, we discovered a phenomenon in which a quadruped robot without any sensors or microprocessor can autonomously generate the various gait patterns of animals using actuator characteristics and select the gaits according to the speed. The robot has one DC motor on each limb and a slider-crank mechanism connected to the motor shaft. Since each motor is directly connected to a power supply, the robot only moves its foot on an elliptical trajectory under a constant voltage. Although this robot does not have any computational equipment such as sensors or microprocessors, when we applied a voltage to the motor, each limb begins to adjust its gait autonomously and finally converged to a steady gait pattern. Furthermore, by raising the input voltage from the power supply, the gait changed from a pace to a half-bound, according to the speed, and also we observed various gait patterns, such as a bound or a rotary gallop. We investigated the convergence property of the gaits for several initial states and input voltages and have described detailed experimental results of each gait observed.

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1823
Author(s):  
Mohammad Haidar ◽  
Hussein Chible ◽  
Corrado Boragno ◽  
Daniele D. Caviglia

Sensor nodes have been assigned a lot of tasks in a connected environment that is growing rapidly. The power supply remains a challenge that is not answered convincingly. Energy harvesting is an emerging solution that is being studied to integrate in low power applications such as internet of things (IoT) and wireless sensor networks (WSN). In this work an interface circuit for a novel fluttering wind energy harvester is presented. The system consists of a switching converter controlled by a low power microcontroller. Optimization techniques on the hardware and software level have been implemented, and a prototype is developed for testing. Experiments have been done with generated input signals resulting in up to 67% efficiency for a constant voltage input. Other experiments were conducted in a wind tunnel that showed a transient output that is compatible with the target applications.


Author(s):  
Г.В. Петрухнова ◽  
И.Р. Болдырев

Представлен комплекс технических средств создания для системы сбора данных. Проведена формализация процессов реализации функций контроля технического объекта. Рассматриваемая система сбора данных состоит из функционально законченных устройств, выполняющих определенные функции в контексте работы системы. Данная система, с одной стороны, может быть одним из узлов распределенной системы сбора данных, с другой стороны, может использоваться автономно. Показана актуальность создания системы. В основе разработки использован RISC микроконтроллер STM32H743VIT6, семейства ARM Cortex-M7, работающий на частоте до 400 МГц. К основным модулям системы относятся 20-входовый распределитель напряжения; модуль питания и настройки; модуль цифрового управления; модуль анализа, хранения и передачи данных в управляющий компьютер. Рассмотрен состав и назначение этих модулей. За сбор данных в рассматриваемой системе отвечает цепочка устройств: датчик - схема согласования - АЦП - микроконтроллер. Поскольку в составе системы имеются не только АЦП, но и ЦАП, то на ее базе может быть реализована система управления объектом. Выбор датчиков для снятия информации обусловлен особенностями объекта контроля. Имеется возможность в ручном режиме измерять электрические параметры контуров связи, в том числе обеспечивать проверку питания IDE и SATA-устройств. Представленная система сбора данных является средством, которое может быть использовано для автоматизации процессов контроля состояния технических объектов We present a set of technical means for creating a data collection system. We carried out the formalization of the processes of implementing the control functions of a technical object. The multifunctional data collection system consists of functionally complete devices that perform certain functions in the context of the system operation. This system, on the one hand, can be one of the nodes of a distributed data collection system, on the other hand, it can be used autonomously. We show the relevance of the system creation. The development is based on the RISC microcontroller STM32H743VIT6, ARM Cortex-M7 family, operating at a frequency of up to 400 MHz. The main modules of the system include: a 20-input voltage distributor; a power supply and settings module; a digital control module; a module for analyzing, storing and transmitting data to a control computer. We considered the composition and purpose of these modules. A chain of devices is responsible for data collection in the system under consideration: sensor - matching circuit - ADC - microcontroller. Since the system includes not only an ADC but also a DAC, an object management system can be implemented on its basis. The choice of sensors for taking information is due to the characteristics of the object of control. It is possible to manually measure the electrical parameters of the communication circuits, including checking the power supply of IDE and SATA devices. The presented data collection system is a tool that can be used to automate the processes of monitoring the condition of technical facilities


2016 ◽  
Vol 13 (02) ◽  
pp. 1550041 ◽  
Author(s):  
Juan Alejandro Castano ◽  
Zhibin Li ◽  
Chengxu Zhou ◽  
Nikos Tsagarakis ◽  
Darwin Caldwell

This paper presents a novel online walking control that replans the gait pattern based on our proposed foot placement control using the actual center of mass (COM) state feedback. The analytic solution of foot placement is formulated based on the linear inverted pendulum model (LIPM) to recover the walking velocity and to reject external disturbances. The foot placement control predicts where and when to place the foothold in order to modulate the gait given the desired gait parameters. The zero moment point (ZMP) references and foot trajectories are replanned online according to the updated foothold prediction. Hence, only desired gait parameters are required instead of predefined or fixed gait patterns. Given the new ZMP references, the extended prediction self-adaptive control (EPSAC) approach to model predictive control (MPC) is used to minimize the ZMP response errors considering the acceleration constraints. Furthermore, to ensure smooth gait transitions, the conditions for the gait initiation and termination are also presented. The effectiveness of the presented gait control is validated by extensive disturbance rejection studies ranging from single mass simulation to a full body humanoid robot COMAN in a physics based simulator. The versatility is demonstrated by the control of reactive gaits as well as reactive stepping from standing posture. We present the data of the applied disturbances, the prediction of sagittal/lateral foot placements, the replanning of the foot/ZMP trajectories, and the COM responses.


2021 ◽  
Vol 2 ◽  
Author(s):  
Anderson Antonio Carvalho Alves ◽  
Lucas Tassoni Andrietta ◽  
Rafael Zinni Lopes ◽  
Fernando Oliveira Bussiman ◽  
Fabyano Fonseca e Silva ◽  
...  

This study focused on assessing the usefulness of using audio signal processing in the gaited horse industry. A total of 196 short-time audio files (4 s) were collected from video recordings of Brazilian gaited horses. These files were converted into waveform signals (196 samples by 80,000 columns) and divided into training (N = 164) and validation (N = 32) datasets. Twelve single-valued audio features were initially extracted to summarize the training data according to the gait patterns (Marcha Batida—MB and Marcha Picada—MP). After preliminary analyses, high-dimensional arrays of the Mel Frequency Cepstral Coefficients (MFCC), Onset Strength (OS), and Tempogram (TEMP) were extracted and used as input information in the classification algorithms. A principal component analysis (PCA) was performed using the 12 single-valued features set and each audio-feature dataset—AFD (MFCC, OS, and TEMP) for prior data visualization. Machine learning (random forest, RF; support vector machine, SVM) and deep learning (multilayer perceptron neural networks, MLP; convolution neural networks, CNN) algorithms were used to classify the gait types. A five-fold cross-validation scheme with 10 repetitions was employed for assessing the models' predictive performance. The classification performance across models and AFD was also validated with independent observations. The models and AFD were compared based on the classification accuracy (ACC), specificity (SPEC), sensitivity (SEN), and area under the curve (AUC). In the logistic regression analysis, five out of the 12 audio features extracted were significant (p < 0.05) between the gait types. ACC averages ranged from 0.806 to 0.932 for MFCC, from 0.758 to 0.948 for OS and, from 0.936 to 0.968 for TEMP. Overall, the TEMP dataset provided the best classification accuracies for all models. The most suitable method for audio-based horse gait pattern classification was CNN. Both cross and independent validation schemes confirmed that high values of ACC, SPEC, SEN, and AUC are expected for yet-to-be-observed labels, except for MFCC-based models, in which clear overfitting was observed. Using audio-generated data for describing gait phenotypes in Brazilian horses is a promising approach, as the two gait patterns were correctly distinguished. The highest classification performance was achieved by combining CNN and the rhythmic-descriptive AFD.


2021 ◽  
Author(s):  
Ritchinder R. S. Samrai

This project is concerned with the application of the ZigBee communication standard for implementing a temperature measurement system. Due to ZigBee's low-power and low data rate features, it is ideal for analog sensor systems. Digi's ZigBee devices called XBee are used in this project. The XBee devices meet all the ZigBee standard. The XBee device has the advantage of being programmed with API firmware (application programming interface). XBee's API provides fast and reliable communication between the remote stations and the base station. The remote station has three different modules: power supply, temperature sensor and XBee device. The power supply is designed to output 3.3V. The temperature sensor is designed so that the output stays within the XBee's maximum analog input voltage range of 0V to 1.2V. The XBee device is programmed as a router. The base station has three different modules: Arduino microcontroller, LCD display and XBee device. The Arduino is programmed to receive the analog readings from the XBee device and convert them into temperature readings The temperature readings are displayed on the LCD display. The XBee device is programmed as a coordinator. The design successfully worked for 3 remote stations and 1 base station.


Author(s):  
Massimiliano Pau ◽  
Micaela Porta ◽  
Giuseppina Pilloni ◽  
Federica Corona ◽  
Maria Chiara Fastame ◽  
...  

The use of a mobile phone for texting purposes results in distracted walking which may lead to injuries. In particular, texting while walking has been shown to induce significant alterations in gait patterns. This study aimed to assess whether changes in the main spatio-temporal parameters of gait when simultaneously engaged in texting on a smartphone and walking are different in older adults relative to young and middle- aged individuals. A total of 57 participants divided in three groups (19 older adults aged over 65, 19 young aged 20-40 and 19 middle-aged aged 41-64) were tested in two conditions: walking, and walking while texting on a smartphone. Spatio-temporal parameters of gait were assessed using a wearable accelerometer located on the lower back. The results show that texting induced similar reduction of gait speed, stride length and cadence in all groups. Slight (although significant) alterations of stance, swing and double support phases duration were found only for middle-aged participants. Such findings suggest that modifications of gait patterns due to texting seem unaffected by age, probably due to different perceptions of the cognitive complexity of the task and differential prioritization of its motor and cognitive aspects.


2021 ◽  
Vol 92 (11) ◽  
pp. 114706
Author(s):  
Geethanjali Pandeswara ◽  
Naresh Pasula ◽  
Geshma Kumari R

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3327 ◽  
Author(s):  
Michal Frivaldsky ◽  
Pavol Spanik ◽  
Jan Morgos ◽  
Michal Pridala

Following the invention of resonant power converters, lots of new topologies with significant improvements considering increase of efficiency and power density are arising. The main differences are related to the configuration of the resonant tank structure. In this paper, LCCT topology is proposed, while main aim is focused on the application of the modular architecture of power supply (MAPS) systems. Initially, principal analysis is given which describes basic features and components selection of LCCT resonant converter. After principal analysis, the application is oriented for above mentioned modular architecture of power supply, where more than one LCCT converter operated simultaneously is considered. The main asset within the presented system investigation is the proposal for the control strategy of the modular power supply system. Instead of the requirement on the most efficient operation within the whole operational power range of MAPS, the proposal for control strategy is given, while it is expected that each module of MAPS will be loaded evenly. The control strategy is based on the digital control, whereby sequential switching of the individual power stages is autonomous based on the information’s of the actual power load. Presented solution gives improvements of the parameters where extended range of input voltage, extended range of output power, flat characteristic of efficiency, and lower ripple current and/or voltage will be required.


Sign in / Sign up

Export Citation Format

Share Document