scholarly journals Mechanisms of Scarless Repair at Time of Menstruation: Insights From Mouse Models

2022 ◽  
Vol 3 ◽  
Author(s):  
Phoebe M. Kirkwood ◽  
Isaac W. Shaw ◽  
Philippa T. K. Saunders

The human endometrium is a remarkable tissue which may experience up to 400 cycles of hormone-driven proliferation, differentiation and breakdown during a woman's reproductive lifetime. During menstruation, when the luminal portion of tissue breaks down, it resembles a bloody wound with piecemeal shedding, exposure of underlying stroma and a strong inflammatory reaction. In the absence of pathology within a few days the integrity of the tissue is restored without formation of a scar and the endometrium is able to respond appropriately to subsequent endocrine signals in preparation for establishment of pregnancy if fertilization occurs. Understanding mechanisms regulating scarless repair of the endometrium is important both for design of therapies which can treat conditions where this is aberrant (heavy menstrual bleeding, fibroids, endometriosis, Asherman's syndrome) as well as to provide new information that might allow us to reduce fibrosis and scar formation in other tissues. Menstruation only occurs naturally in species that exhibit spontaneous stromal cell decidualization during the fertile cycle such as primates (including women) and the Spiny mouse. To take advantage of genetic models and detailed time course analysis, mouse models of endometrial shedding/repair involving hormonal manipulation, artificial induction of decidualization and hormone withdrawal have been developed and refined. These models are useful in modeling dynamic changes across the time course of repair and have recapitulated key features of endometrial repair in women including local hypoxia and immune cell recruitment. In this review we will consider the evidence that scarless repair of endometrial tissue involves changes in stromal cell function including mesenchyme to epithelial transition, epithelial cell proliferation and multiple populations of immune cells. Processes contributing to endometrial fibrosis (Asherman's syndrome) as well as scarless repair of other tissues including skin and oral mucosa are compared to that of menstrual repair.

2015 ◽  
Vol 73 ◽  
pp. 388-398 ◽  
Author(s):  
Ulrike Träger ◽  
Ralph Andre ◽  
Anna Magnusson-Lind ◽  
James R.C. Miller ◽  
Colúm Connolly ◽  
...  

2002 ◽  
Vol 23 (1) ◽  
pp. 90-119 ◽  
Author(s):  
Johannes Pfeilschifter ◽  
Roland Köditz ◽  
Martin Pfohl ◽  
Helmut Schatz

Abstract There is now a large body of evidence suggesting that the decline in ovarian function with menopause is associated with spontaneous increases in proinflammatory cytokines. The cytokines that have obtained the most attention are IL-1, IL-6, and TNF-α. The exact mechanisms by which estrogen interferes with cytokine activity are still incompletely known but may potentially include interactions of the ER with other transcription factors, modulation of nitric oxide activity, antioxidative effects, plasma membrane actions, and changes in immune cell function. Experimental and clinical studies strongly support a link between the increased state of proinflammatory cytokine activity and postmenopausal bone loss. Preliminary evidence suggests that these changes also might be relevant to vascular homeostasis and the development of atherosclerosis. Better knowledge of the mechanisms and the time course of these interactions may open new avenues for the prevention and treatment of some of the most prevalent and important disorders in postmenopausal women.


2021 ◽  
Vol 206 (2) ◽  
pp. 282-291
Author(s):  
Valeria Ramaglia ◽  
Alexandra Florescu ◽  
Michelle Zuo ◽  
Salma Sheikh-Mohamed ◽  
Jennifer L. Gommerman

2017 ◽  
Vol 85 (10) ◽  
Author(s):  
Nicole V. Acuff ◽  
Xin Li ◽  
Krishna Latha ◽  
Tamas Nagy ◽  
Wendy T. Watford

ABSTRACT Tumor progression locus 2 (Tpl2) is a serine-threonine kinase that regulates Th1 differentiation, secretion of the inflammatory cytokine gamma interferon (IFN-γ), and host defense against the intracellular pathogens Toxoplasma gondii, Listeria monocytogenes, and Mycobacterium tuberculosis. However, relatively little is known about the contribution of Tpl2 to Th17 differentiation and immune cell function during infection with an extracellular pathogen. The goal of this study was to determine whether Tpl2 influences the immune response generated to the extracellular bacterium Citrobacter rodentium, which induces a mixed Th1 and Th17 response. During peak infection with C. rodentium, Tpl2 −/− mice experienced greater bacterial burdens with evidence of dissemination to the liver and spleen but ultimately cleared the bacteria within 3 weeks postinfection, similar to the findings for wild-type mice. Tpl2 −/− mice also recruited fewer neutrophils and monocytes to the colon during peak infection, which correlated with increased bacterial burdens. In mixed bone marrow chimeras, Tpl2 was shown to play a T cell-intrinsic role in promoting both IFN-γ and interleukin-17A production during infection with C. rodentium. However, upon CD4 T cell transfer into Rag −/− mice, Tpl2 −/− CD4 T cells were as protective as wild-type CD4 T cells against the dissemination of bacteria and mortality. These data indicate that the enhanced bacterial burdens in Tpl2 −/− mice are not caused primarily by impairments in CD4 T cell function but result from defects in innate immune cell recruitment and function.


Author(s):  
Bruce Kirkham

Psoriatic arthritis immunopathology has become the subject of intense study. These findings show differences to other forms of inflammatory arthritis in key pathways. Increased knowledge of innate immunity and the important role of IL-17/23 biology in both psoriasis and psoriatic arthritis, have led to new theories of immunopathogenesis in both conditions. Direct environmental stimuli could trigger innate immune cells resident in skin, which may then initiate a chronic adaptive immune response. The joint has fewer resident innate immune cells, but new studies show cells producing IL-17 may play key roles in immunopathology. The new information summarized here will provide important hypotheses for investigation of pathogenic pathways. Differences in non-immune cell function may also be critical mediators of response, for example, production of IL-12 or IL-23 by dendritic cells. Keratinocytes in skin and fibroblasts in joints may be critical in mediating cytokine production and effector function.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 8.1-8
Author(s):  
G. Robinson ◽  
K. Waddington ◽  
J. Peng ◽  
A. Radziszewska ◽  
H. Peckham ◽  
...  

Background:Males and females have altered immune responses resulting in variation in autoimmune and cardiovascular disease risk (CVR). Recently, these differences have played a role in the inflammatory response to COVID-19. Sex differences exist in the frequency and activity of immune-cell subsets but mechanisms underlying sexual dimorphism remain unknown. Juvenile-onset systemic lupus erythematosus (JSLE) is an autoimmune disorder that commonly emerges during puberty, has a strong female prevalence (female:male ratio, 4.5:1) and results in an increased CVR. JSLE is characterised by chronic inflammation and dyslipidaemia, where cardiovascular disease is a leading cause of mortality for patients. Our previous work identified a link between immune cell function and lipid metabolism in adult-onset SLE. We hypothesised that sex hormones could influence both lipid metabolism and immune cell function and this could determine sex-specific susceptibility to JSLE and associated CVR.Objectives:We investigated the role of sex hormones in modifying systemic lipid metabolism and inflammation.Methods:Nuclear magnetic resonance spectroscopy based serum metabolomics measuring over 130 lipoproteins (14-subsets with lipid compositions), flow cytometry measuring immune-cells, and RNA-sequencing were used to assess the metabolic and immune profile in young, pre/post-pubertal males (n=10/17) and females (n=10/23) and in individuals with gender-dysphoria (GD) under cross-hormone treatment (trans-male/female, n=26/25). This analysis was also performed on a cohort of post-pubertal male (n=12) and female (n=23) JSLE patients. Data was analysed by logistic regression, balanced random forest machine learning (BRF-ML), differential gene expression (DEG) and pathway analysis.Results:Post-pubertal males had significantly reduced cardio-protective high-density lipoprotein (HDL) subsets (p<0.0001) and increased cardio-pathogenic very-low-density lipoprotein subsets (p<0.0001) compared to females. These differences were not observed pre-puberty and were reversed significantly by cross-hormone treatment in GD individuals, suggesting that sex hormones regulate lipid metabolism in-vivo.BRF-ML (28 immune-cell subsets) identified an increased frequency of anti-inflammatory regulatory T-cells (Tregs) in post-pubertal males compared to females (p=0.0097). These Tregs were also more suppressive in males compared to females. Differences in Treg frequency were seen pre-puberty and were not altered by sex hormone treatment in GD individuals. However, Treg DEGs and functional transcriptomic pathways altered between post-pubertal males and females, including those involved in inflammatory signalling, overlapped with those altered by hormones in GD, suggesting hormones may also drive Treg functional changes. In addition, HDL metabolites modified by hormones showed differential associations with Treg phenotypes between post-pubertal males and females.Strikingly, sex differences in lipoproteins and Tregs were lost in JSLE, suggesting hormone signalling could be dysregulated in the pathogenesis of autoimmunity and could increase CVR for patients.Conclusion:Sex hormones drive altered lipoprotein metabolism and functional transcriptomic pathways in Tregs. Males have a lipoprotein profile associated with increased CVR, but a more anti-inflammatory immune profile compared to females. Together, this could explain sex differences in inflammatory disease susceptibilities and inform future sex-specific therapeutic strategies for the management of both JSLE and CVR.Acknowledgements:Lupus UKRosetrees TrustVersus ArthritisNIHR UCLH Biomedical Research CentreDisclosure of Interests:None declared


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii63-ii63
Author(s):  
Lakshmi Bollu ◽  
Derek Wainwright ◽  
Lijie Zhai ◽  
Erik Ladomersky ◽  
Kristen Lauing ◽  
...  

Abstract INTRODUCTION Indoleamine 2,3-dioxygenase 1 (IDO; IDO1) is a rate-limiting enzyme that metabolizes the essential amino acid tryptophan into kynurenine. Recent work by our group has revealed that IDO promotes tumor development and suppresses immune cell functions independent of its enzyme activity. Moreover, pharmacologic IDO enzyme inhibitors that currently serve as the only class of drugs available for targeting immunosuppressive IDO activity, fail to improve the survival of patients with GBM. Here, we developed IDO-Proteolysis Targeting Chimeras (IDO-PROTACs). PROTACs bind to a specific protein and recruit an E3 ubiquitin ligase that enhance proteasome-mediated degradation of the target protein. METHODS A library of ≥100 IDO-PROTACs were developed by joining BMS986205 (IDO binder) with a linker group to various E3-ligase ligands. Western blot analysis of PROTAC-induced IDO degradation was tested in vitro among multiple human and mouse GBM cell lines including U87, GBM6, GBM43 and GL261 along a time course ranging between 1–96 hours of treatment and at varying concentrations. The mechanism of IDO protein degradation was investigated using pharmacologic ligands that inhibit or compete with the proteasome-mediated protein degradation pathway. RESULTS Primary screening identified several IDO-PROTACs with IDO protein degradation potential. Secondary screening showed that our lead compound has a DC50 value of ~0.5µM with an ability to degrade IDO in all GBM cells analyzed, and an initial activity within 12 hours of treatment that extended for up to 96 hours. Mutating the CRBN-binding ligand, pretreatment with the ubiquitin proteasome system inhibitors MG132 or MLN4924 or using unmodified parental compound all inhibited IDO protein degradation. CONCLUSIONS This study developed an initial IDO-PROTAC technology that upon further optimization, can neutralize both IDO enzyme and non-enzyme immunosuppressive effects. When combined with other forms of immunotherapy, IDO-PROTACs have the potential to substantially enhance immunotherapeutic efficacy in patients with GBM.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1835
Author(s):  
Hana Yamaguchi ◽  
Miki Hiroi ◽  
Kazumasa Mori ◽  
Ryosuke Ushio ◽  
Ari Matsumoto ◽  
...  

Chemokines and cytokines in the tumor microenvironment influence immune cell infiltration and activation. To elucidate their role in immune cell recruitment during oral cancer development, we generated a mouse tongue cancer model using the carcinogen 4-nitroquinoline 1-oxide (4NQO) and investigated the carcinogenetic process and chemokine/cytokine gene expression kinetics in the mouse tongue. C57/BL6 mice were administered 4NQO in drinking water, after which tongues were dissected at 16 and 28 weeks and subjected to analysis using the RT2 Profiler PCR Array, qRT-PCR, and pathologic and immunohistochemical analyses. We found that Th1-associated chemokine/cytokine (Cxcl9, Cxcl10, Ccl5, and Ifng) and Treg-associated chemokine/cytokine (Ccl17, Ccl22, and Il10) mRNA levels were simultaneously increased in premalignant lesions of 4NQO-treated mice at 16 weeks. Additionally, although levels of Gata3, a Th2 marker, were not upregulated, those of Cxcr3, Ccr4, and Foxp3 were upregulated in the tongue tissue. Furthermore, immunohistochemical analysis confirmed the infiltration of CD4+, CD8+, and Foxp3+ cells in the tongue tissue of 4NQO-treated mice, as well as significant correlations between Th1- or Treg-associated chemokine/cytokine mRNA expression and T cell infiltration. These results indicate that CD4+, CD8+, and Foxp3+ cells were simultaneously recruited through the expression of Th1- and Treg-associated chemokines in premalignant lesions of 4NQO-induced mouse tongue tissue.


Lupus ◽  
2021 ◽  
pp. 096120332199010
Author(s):  
Vineeta Shobha ◽  
Anu Mohan ◽  
AV Malini ◽  
Puneet Chopra ◽  
Preethi Karunanithi ◽  
...  

Objective Despite the significant advancement in the understanding of the pathophysiology of systemic lupus erythematosus (SLE) variable clinical response to newer therapies remain a major concern, especially for patients with lupus nephritis and neuropsychiatric systemic lupus erythematosus (NPSLE). We performed this study with an objective to comprehensively characterize Indian SLE patients with renal and neuropsychiatric manifestation with respect to their gene signature, cytokine profile and immune cell phenotypes. Methods We characterized 68 Indian SLE subjects with diverse clinical profiles and disease activity and tried to identify differentially expressed genes and enriched pathways. To understand the temporal profile, same patients were followed at 6 and 12-months intervals. Additionally, auto-antibody profile, levels of various chemokines, cytokines and the proportion of different immune cells and their activation status were captured in these subjects. Results Multiple IFN-related pathways were enriched with significant increase in IFN-I gene signature in SLE patients as compared to normal healthy volunteers (NHV). We identified two transcriptionally distinct clusters within the same cohort of SLE patients with differential immune cell activation status, auto-antibody as well as plasma chemokines and cytokines profile. Conclusions Identification of two distinct clusters of patients based on IFN-I signature provided new insights into the heterogeneity of underlying disease pathogenesis of Indian SLE cohort. Importantly, patient within those clusters retain their distinct expression dynamics of IFN-I signature over the time course of one year despite change in disease activity. This study will guide clinicians and researchers while designing future clinical trials on Indian SLE cohort.


Sign in / Sign up

Export Citation Format

Share Document