scholarly journals How Can Dogs and Cats Help to Cure Human Cancers?

2022 ◽  
Vol 9 ◽  
Author(s):  
Laura Bongiovanni ◽  
Philip J. Bergman ◽  
Alain de Bruin

Like their owners, dogs and cats can be affected by several types of cancer, and some types are very similar to those seen in people. Unfortunately, there is still no cure for several types of cancer. How can humans’ best friends help? If a new therapy to fight cancer works well in pets, it is likely to also be effective in people with the same type of cancer. Scientists, medical doctors, and animal doctors are working together to develop new therapies that destroy cancer cells and save patients. Since the characteristics of certain types of cancer are very similar between humans and pets, new medicines that work in pet dogs or cats may also benefit human patients. Studying these “human-like” cancers in pets may speed up the development of effective anti-cancer drugs and will help to cure not only more dogs and cats, but also people with cancer.

2013 ◽  
Vol 3 (1) ◽  
pp. 7 ◽  
Author(s):  
Anthony Stanislaus ◽  
Anil Philip Kunnath ◽  
Snigdha Tiash ◽  
Tahereh Fatemian ◽  
Nur Izyani Kamaruzman ◽  
...  

Cervical cancer is the second most common cancer and fourth leading cause of cancer-related deaths among women. Advanced stage of the disease is treated with radiation therapy and chemotherapy with poor therapeutic outcome and adverse side effects. NFκB, a well-known transcription factor in the control of immunity and inflammation, has recently emerged as a key regulator of cell survival through induction of antiapoptotic genes. Many human cancers, including cervical carcinoma, constitutively express NF-κB and a blockade in expression of its subunit proteins through targeted knockdown of the gene transcripts with small interfering RNAs (siRNA) could be an attractive approach in order to sensitize the cancer cells towards the widely used anti-cancer drugs. However, the inefficiency of the naked siRNA to cross the plasma membrane and its sensitiveness to nuclease-mediated degradation are the major challenges limiting the siRNA technology in therapeutic intervention. pH-sensitive carbonate apatite has been established as an efficient nano-carrier for intracellular delivery of siRNA, due to its strong electrostatic interaction with the siRNA, the desirable size distribution of the resulting siRNA complex for effective endocytosis and the ability of the endocytosed siRNA to be released from the degradable particles and escape the endosomes, thus leading to the effective knockdown of the target gene of cyclin B1 or ABCB1. Here, we report that carbonate apatite-facilitated delivery of the siRNA targeting NF-κB1 and NF-κB2 gene transcripts in HeLa, a human cervical adenocar- cinoma cell line expressing NF-κB, led to a synergistic effect in enhancement of chemosensitivity to doxorubicin, but apparently not to cisplatin or paclitaxel.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2753 ◽  
Author(s):  
Sabrina Esposito ◽  
Alessandro Bianco ◽  
Rosita Russo ◽  
Antimo Di Maro ◽  
Carla Isernia ◽  
...  

A large range of chronic and degenerative diseases can be prevented through the use of food products and food bioactives. This study reports the health benefits and biological activities of the Urtica dioica (U. dioica) edible plant, with particular focus on its cancer chemopreventive potential. Numerous studies have attempted to investigate the most efficient anti-cancer therapy with few side effects and high toxicity on cancer cells to overcome the chemoresistance of cancer cells and the adverse effects of current therapies. In this regard, natural products from edible plants have been assessed as sources of anti-cancer agents. In this article, we review current knowledge from studies that have examined the cytotoxic, anti-tumor and anti-metastatic effects of U. dioica plant on several human cancers. Special attention has been dedicated to the treatment of breast cancer, the most prevalent cancer among women and one of the main causes of death worldwide. The anti-proliferative and apoptotic effects of U. dioica have been demonstrated on different human cancers, investigating the properties of U. dioica at cellular and molecular levels. The potent cytotoxicity and anti-cancer activity of the U. dioica extracts are due to its bioactive natural products content, including polyphenols which reportedly possess anti-oxidant, anti-mutagenic and anti-proliferative properties. The efficacy of this edible plant to prevent or mitigate human cancers has been demonstrated in laboratory conditions as well as in experimental animal models, paving the way to the development of nutraceuticals for new anti-cancer therapies.


APOPTOSIS ◽  
2006 ◽  
Vol 11 (7) ◽  
pp. 1205-1214 ◽  
Author(s):  
K. O'Connor ◽  
C. Gill ◽  
M. Tacke ◽  
F.-J. K. Rehmann ◽  
K. Strohfeldt ◽  
...  

2021 ◽  
Author(s):  
Jing Song ◽  
Arie Dagan

AbstractCeramide metabolism is a potential target for anti-cancer therapy. Studies show that chemotherapeutic agents can induce apoptosis and it is mediated by ceramide. Synthesized sphingolipid analogs can induce cell death in human lymphocytes and leukemia cells. By screening a group of synthetic sphingolipid analogs, we found that low concentrations of AD2750 and AD2646 induced cell death in human cancer cells by preventing ceramide from converting to sphingomyelin, individually or in combination with commercial cancer drugs. The combination of low concentrations of Taxol and AD2750 or AD2646 significantly increased cell death on human colon cancer cells (HT29). Co-administering low concentrations of Doxorubicin with AD2750 or AD2646 elevated cellular toxicity on human pancreatic cancer cells (CRL1687). This synergistic effect is related to the elevated cellular ceramide. Combining AD2750 or AD2646 with chemotherapy drugs can be used to manipulate ceramide and sphingomyelin metabolism, potentially to affect the growth of human cancer cells and increase the effectiveness of anti-cancer drugs on killing cancer cells.


Author(s):  
Anne-Marie Sapse

Cancer is an extraordinarily complicated group of diseases which are characterized by the loss of normal control of the maintenance of cellular organization in the tissues. It is still not completely understood how much of the disease is of genetic, viral, or environmental origin. The result, however, is that cancer cells possess growth advantages over normal cells, a reality which damages the host by local pressure effects, destruction of tissues, and secondary systemic effects. As such, a goal of cancer therapy is the destruction of cancer cells via chemotherapeutic agents or radiation. Since the late 1940s, when Farber treated leukemia with methotrexate, cancer therapy with cytotoxic drugs made enormous progress. Chemotherapy is usually integrated with other treatments such as surgery, radiotherapy, and immunotherapy, and it is clear that post-surgery, it is effective with solid tumors. This is due to the fact that only systemic therapy can attack micrometastases. The rationale for using chemotherapy is the control of tumor-cell populations via a killing mechanism. The major problem in this approach is the lack of selectivity of chemotherapeutic agents. Some agents indeed preferentially kill cancer cells, but no agents have been synthesized yet which kill only cancer cells and do not affect normal cells. Unfortunately, normal tissues are affected, giving rise to a multitude of side effects. In addition to drugs exhibiting cytotoxic activity, antiproliferative drugs are also formulated. According to their mode of action, anti-cancer drugs are divided into several classes. . . . alkylating agents antimetabolites DNA intercalators mitotic inhibitors lexitropsins drugs which bind covalently to DNA . . . Experimental studies of these molecules are complemented and enhanced by theoretical studies. Some of the theoretical studies use molecular mechanics methods while others apply ab initio or semi-empirical quantum-chemistry methods. Most of these molecules are large and besides their structures and properties it is important to investigate their interaction with DNA fragments (themselves large molecules). Ab initio calculations cannot always be applied to the whole system. Therefore, models are used and through a judicious choice of the entities investigated, the calculations can shed light on the problem and provide enough information to complement the experimental studies.


2021 ◽  
Vol 28 ◽  
Author(s):  
Minnatallah Al-Yozbaki ◽  
Peter J. Wilkin ◽  
Girish Kumar Gupta ◽  
Cornelia M. Wilson

: Lung cancer is a leading cause of cancer deaths worldwide. The management of lung cancer treatment is often ineffective as a result of the development of drug resistance, reactions to treatment, drug-drug interactions or non-specific targeting of the anti-cancer drugs. Natural compounds show promise and potential activity in lung cancer with very few side effects. While, the combinatorial action of an anti-cancer drug with a natural compound provide synergistic action which help to boost the overall therapeutic action against cancer cells. In cancer, there is a dysregulation of apoptosis which facilitates the cancer cell to survive resulting in progression of the cancer. Many cancer drugs cause mutations of genes that regulate the cancer which should kill the cancer cell but lead to chemoresistance. There are many natural compounds that could specifically target different cell signalling pathways associated with cancer progression to provide a cytotoxic effect in the target cell. The importance of these compounds is emerging in many therapies developed with dual action often including a natural compound. In this review, we present a selection of these natural compounds and how they target lung cancer cells with a focus on the cell signalling pathways. Further work is required to delineate the potential action of natural compounds in the treatment against cancer.


Sign in / Sign up

Export Citation Format

Share Document