scholarly journals Farm Production Diversity in Aquaculture Has Been Overlooked as a Contributor to Sustainability

2021 ◽  
Vol 5 ◽  
Author(s):  
Mark P. Johnson

Like many sectors, the expansion of aquaculture has issues related to sustainable resource use and environmental change. These challenges are widely recognised and are addressed with sectoral strategies. Even when culturing a single species, the specifics of impacts, constraints, and pressures are likely to vary in effects for different farm types. On the other hand, production efficiencies can drive farms towards homogeneity. A simple model is used in this study to demonstrate farm-scale budgets and the pressure to intensify production towards an optimum. A range of interventions can provide incentives for less intensive production: these include price premiums and altered cost bases. Integrated multitrophic aquaculture (IMTA) does not offer a route to less intensive production systems if the productivity of the extractive species (e.g., algae) is linked to the intensity of the fish farm, although alternative incentives for IMTA are possible. Increases in the intensity of production (as stocking density) can be mitigated by increasing farm capacity. An expanded production model suggests that this will lead to larger farms at relatively high stocking densities. Where farms are subject to variable economic and biological processes, this can lead to some combinations of intensity and capacity to have less variable earnings than others. The promotion of diverse aquaculture sectors may allow some of the ecological and social synergies available to smaller farms to be combined at a regional scale with the greater production of large farms. Cost, price and/or regulatory incentives are needed to create diverse production systems.

2009 ◽  
Vol 6 (1) ◽  
pp. 124-127 ◽  
Author(s):  
Henrik Sparholt ◽  
Robin M. Cook

The theory of maximum sustainable yield (MSY) underpins many fishery management regimes and is applied principally as a single species concept. Using a simple dynamic biomass production model we show that MSY can be identified from a long time series of multi-stock data at a regional scale in the presence of species interactions and environmental change. It suggests that MSY is robust and calculable in a multispecies environment, offering a realistic reference point for fishery management. Furthermore, the demonstration of the existence of MSY shows that it is more than a purely theoretical concept. There has been an improvement in the status of stocks in the Northeast Atlantic, but our analysis suggests further reductions in fishing effort would improve long-term yields.


2017 ◽  
Vol 57 (7) ◽  
pp. 1336 ◽  
Author(s):  
Ronaldo Vibart ◽  
Alec Mackay ◽  
Andrew Wall ◽  
Iris Vogeler ◽  
Josef Beautrais ◽  
...  

Farm-scale models were integrated with spatially discrete estimates of pasture production to examine the potential farm and regional implications of removing palm-kernel expeller (PKE) as a supplementary feed from dairy farms in Southland, New Zealand. The following two farm-production systems representing the majority of dairy farms in the region were modelled: a System 3 farm (D3; mid-intensification, with 10–20% of imported feed) and a System 4 farm (D4; mid- to high intensification, with 20–30% of imported feed). Within each system, the impact of the following four PKE options was explored: (1) a control with PKE (Baseline); (2) no PKE, with fewer cows producing the same amount of milk per cow as in Baseline; (3) no PKE, with the same number of cows producing less milk per cow than in Baseline; and (4) PKE replaced with barley grain. Barley grain provides for similar flexibility (timing of purchase and feeding), and can be sourced locally. Faced with the need to remove PKE as a dietary ingredient, farmers would benefit from adopting the second PKE option (no PKE, with fewer cows producing the same amount of milk per cow as in Baseline); farm-operating profits were reduced by only 3% (compared with 30% of System 4 farms adopting the third PKE option, i.e. no PKE, with the same number of cows producing less milk per cow than in Baseline) relative to the Baseline farms. The narrow range of mean annual nitrate-nitrogen (nitrate-N) leaching losses (estimates ranged from 30 to 33 kg N/ha) reflects similar estimates of N intake and N excreted in urine across the modelled options. Substantial amounts of barley grain would need to be transported into the region or produced locally to replace PKE.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Virginia A. Kowal ◽  
Sharon M. Jones ◽  
Felicia Keesing ◽  
Brian F. Allan ◽  
Jennifer M. Schieltz ◽  
...  

AbstractInformed management of livestock on rangelands underpins both the livelihoods of communities that depend on livestock for sustenance, and the conservation of wildlife that often depend on livestock-dominated landscapes for habitat. Understanding spatial patterns of rangeland productivity is therefore crucial to designing global development strategies that balance social and environmental benefits. Here we introduce a new rangeland production model that dynamically links the Century ecosystem model with a basic ruminant diet selection and physiology model. With lightweight input data requirements that can be met with global sources, the model estimates the viability of broad livestock management decisions, and suggests possible implications of these management decisions for grazing wildlife. Using minimal field data, the new rangeland production model enables the reliable estimation of cattle stocking density; this is an important predictor of the viability of livestock production and forage available for grazing wildlife.


2017 ◽  
Vol 6 (2) ◽  
pp. 66 ◽  
Author(s):  
Maria Storrle ◽  
Hans-Jorg Brauckmann ◽  
Gabriele Broll

This study investigates the amounts of greenhouse gas (GHG) emissions due to manure handling within different livestock production systems in Tyumen oblast of Western Siberia. Tyumen oblast occupies approx. 160 000 km² of Asian taiga and forest steppe. The amount of GHGs from manure was calculated as a function of the handling according to current IPCC guidelines for ecozones and livestock production systems. The entire Tyumen oblast has annual 7 400 t methane emissions and 440 t nitrous oxide emissions from manure. Three livestock production systems are prevalent in Tyumen oblast: Mega farms, small farms and peasant farms. The share of mega farms is 81 % (171 kt CO2 eq). Additionally, the slurry system in mega farms causes environmental pollution. GHG emissions and environmental pollution could be reduced by implementing solid manure systems or pasturing, by installing storage facilities for slurry outside the stables and through application of the manure as fertiliser at mega farms. In small farms solid manure systems and a small stocking density of livestock lead to smallest GHG emissions (1 %, 3 kt CO2 eq) from manure. In peasant farming 18 % (38 kt CO2 eq) of GHGs are emitted due to pasturing. 


2014 ◽  
Vol 65 (7) ◽  
pp. 583 ◽  
Author(s):  
J. A. Kirkegaard ◽  
J. R. Hunt ◽  
T. M. McBeath ◽  
J. M. Lilley ◽  
A. Moore ◽  
...  

Improving the water-limited yield of dryland crops and farming systems has been an underpinning objective of research within the Australian grains industry since the concept was defined in the 1970s. Recent slowing in productivity growth has stimulated a search for new sources of improvement, but few previous research investments have been targeted on a national scale. In 2008, the Australian grains industry established the 5-year, AU$17.6 million, Water Use Efficiency (WUE) Initiative, which challenged growers and researchers to lift WUE of grain-based production systems by 10%. Sixteen regional grower research teams distributed across southern Australia (300–700 mm annual rainfall) proposed a range of agronomic management strategies to improve water-limited productivity. A coordinating project involving a team of agronomists, plant physiologists, soil scientists and system modellers was funded to provide consistent understanding and benchmarking of water-limited yield, experimental advice and assistance, integrating system science and modelling, and to play an integration and communication role. The 16 diverse regional project activities were organised into four themes related to the type of innovation pursued (integrating break-crops, managing summer fallows, managing in-season water-use, managing variable and constraining soils), and the important interactions between these at the farm-scale were explored and emphasised. At annual meetings, the teams compared the impacts of various management strategies across different regions, and the interactions from management combinations. Simulation studies provided predictions of both a priori outcomes that were tested experimentally and extrapolation of results across sites, seasons and up to the whole-farm scale. We demonstrated experimentally that potential exists to improve water productivity at paddock scale by levels well above the 10% target by better summer weed control (37–140%), inclusion of break crops (16–83%), earlier sowing of appropriate varieties (21–33%) and matching N supply to soil type (91% on deep sands). Capturing synergies from combinations of pre- and in-crop management could increase wheat yield at farm scale by 11–47%, and significant on-farm validation and adoption of some innovations has occurred during the Initiative. An ex post economic analysis of the Initiative estimated a benefit : cost ratio of 3.7 : 1, and an internal return on investment of 18.5%. We briefly review the structure and operation of the initiative and summarise some of the key strategies that emerged to improve WUE at paddock and farm-scale.


Author(s):  
Francisco de Asís Ruiz ◽  
Daniel Grande ◽  
José Nahed ◽  
José María Castel ◽  
Yolanda Mena

Abstract In the Mediterranean Basin, sheep meat production systems are based on grazing, and help to conserve biodiversity, mitigate the greenhouse gases emissions and maintain the population in rural areas. However, the lack of differentiation of pastoral systems, as opposed to the intensive model, puts its continuity at risk. In this sense, organic farming can be an alternative to sustain extensive sheep-cereal production systems in marginal Mediterranean drylands. The aim of this research was to evaluate the conversion possibilities of pastoral meat sheep production systems to the organic production model in the Mediterranean Basin, working with the autochthonous Segureña breed sheep. 46 farms were studied, classified into four clusters by mean of multivariate analysis. In order to determine the degree to which farms approached the organic model, 60 variables, grouped into nine indicators were analyzed to obtain an Organic Conversion Index (OCI). The Nutritional management indicator has a high value of approaching the organic model, as well as Animal welfare and Food safety. Marketing and business management, Breeds and reproduction, Weed and pest control and Sustainable pasture management indicators also reach a good approximation level. Only the Breeds and reproduction indicator presented values with significant differences between clusters. The average value of the OCI for the 46 farms ranges from 63 to 70%, and therefore it can be concluded that extensive meat sheep herds in the region are close to this production model. Among the recommendations that can be made to improve the conversion possibilities to the organic model are: (i) to increase own fodder production or find a way to obtain it easily and economically; (ii) to complete the plant−soil−animal cycle, (iii) to seek greater marketing autonomy and (iv) to achieve closer contact with the final consumer. At the same time, government policy both in Spain and other parts of Europe should persevere to find more ways to support the progress of this type of production, in an effort to address limitations and overcome the lack of alternative markets.


Author(s):  
G Gaunt ◽  
S Jolly ◽  
G Duddy

Sign in / Sign up

Export Citation Format

Share Document