scholarly journals Assessment of the Short-Term Fertilizer Potential of Mealworm Frass Using a Pot Experiment

2021 ◽  
Vol 5 ◽  
Author(s):  
David Houben ◽  
Guillaume Daoulas ◽  
Anne-Maïmiti Dulaurent

The forecasted growth of insect production in the next few years will generate high quantities of frass (insect excreta). Although frass is increasingly considered a potential fertilizer, the dynamics of nutrient supply by frass is still poorly understood. Here, we aimed at gaining insight into the short-term fertilizer value of frass from mealworm (Tenebrio molitor L.) in order to optimize its sustainable use in agroecosystems. Using a short-term pot experiment, we showed that, even though frass has a great potential to be used as a substitute of mineral NPK fertilizer, its N fertilizer potential is mediated by its rate of application. At 10 t ha−1, due to its fast mineralization coupled with improvement in microbial activity (assessed using Biolog EcoPlate), frass was as effective as mineral fertilizer to supply N to plant. By contrast, at 5 t ha−1, the lower frass mineralization induced a reduced N uptake compared to its mineral control. Unlike N, frass was as effective as mineral fertilizer to supply P and K to plants irrespective of its application rate. This was attributed to the presence of P and K in a readily available form in frass. Taken together, our results indicate that mealworm frass supplies very rapidly N, P and K to plants but its effects on N dynamics should be better investigated to warrant its sustainable use as an alternative fertilizer for managing NPK nutrition in cropping systems.

Author(s):  
Chih-Yu Hung ◽  
Naseer Hussain ◽  
Barry Husk ◽  
Joann K. Whalen

Ammonia (NH3) volatilization from ammonia-based fertilizer and animal manure reduces their nitrogen fertilizer value and is a source of environmental pollution. Mixing manure with biochar may lower NH3 volatilization from manure by adding H+, adsorbing mineral nitrogen (N), or increasing N immobilization in microbial biomass. The objective of this study was to determine whether wood-based biochar could lower NH3 volatilization from vented pails containing manure (liquid swine, dairy slurry, and solid poultry manure) or a urea ammonium nitrate solution (UAN). Two types of wood-based biochar (BlueLeaf and Dynamotive) were mixed with three types of manure and UAN fertilizer solution at 0, 2.5, 5, 10, and 25 % biochar by volume in vented pails. After 21 d storage in an outdoor shaded area, the greatest NH3 volatilization was from poultry manure, which had pH 9.4 on average and low water content regardless of the biochar source and application rate. There was less NH3 volatilization from UAN fertilizer solution when mixed with 25% (v/v) of Dynamotive biochar compared to NH3 volatilization from UAN fertilizer solution mixed with 0–10% (%) of Dynamotive biochar, probably because pH decreased from 7.0 to 6.4 after 21 d contact. Mixing wood-based biochar with manure had no impact on NH3 volatilization, suggesting that these biochar sources did not appreciably change the pH and N dynamics in stored manure after 21 d.


Soil Research ◽  
2010 ◽  
Vol 48 (7) ◽  
pp. 569 ◽  
Author(s):  
L. van Zwieten ◽  
S. Kimber ◽  
A. Downie ◽  
S Morris ◽  
S. Petty ◽  
...  

The effect of a low mineral ash biochar on biomass production and nitrogen (N) uptake into plants was tested with wheat and radish in a Yellow Earth used for commercial vegetable production. The biochar had an acid neutralising capacity <0.5% CaCO3, a total C content of 75%, and a molar H/C ratio of 0.45, indicating stability due to its aromaticity. A pot trial was established under climate-controlled conditions. Five rates of N fertiliser (0, 17, 44, 88, 177 kg N/ha) were applied as urea in combination with 5 biochar rates (0, 1.1, 2.2, 4.4, 11% w/w). Analysis of biomass production revealed a significant biochar × N fertiliser interaction. In particular, increasing biochar concentrations improved biomass production in both crop species at lower N application rates. The highest biochar application rate resulted in significantly greater accumulation of NO3 –-N in the soil and lower NH4 +-N averaged across the 5 N application rates. The biochar also decreased available P, and significantly increased microbial activity measured using the fluorescein diacetate method. Increasing N fertiliser application resulted in greater accumulation of NO3 –-N with no changes to NH4 +-N averaged across the 5 biochar application rates. Nitrogen fertiliser application did not influence microbial activity or biomass C. The trial suggests that in some cropping systems, biochar application will enable reduced N fertiliser input while maintaining productivity.


2016 ◽  
Vol 96 (4) ◽  
pp. 427-434 ◽  
Author(s):  
Ben W. Thomas ◽  
Joann K. Whalen ◽  
Mehdi Sharifi

Concurrent N mineralization and immobilization in soils receiving poultry litter containing woodchip bedding may reduce synchrony between the short-term N supply and crop N demand. Therefore, we used soil chemical tests, ion exchange membranes, and wheat N uptake to assess N dynamics in a poultry-litter-amended soil. Air-dried soil was thoroughly mixed with five poultry litter rates (50, 100, 150, 200, or 250 mg total N kg−1) and preincubated for 7 d in a controlled environment chamber. After preincubating, soil was placed in 10-cm-diameter pots and planted with spring wheat (Triticum aestivum ‘Wilkin’), or left unplanted and monitored with anion and cation exchange membranes for 45 d. Soil nitrate (NO3-N) concentration increased with poultry litter application rate at the end of the preincubation period, but subsequent wheat N uptake did not, suggesting that little net N mineralization occurred during the 45 d of wheat growth. The membrane data indicated a shift from net N immobilization during the early part of the wheat growth period to net mineralization during the latter portion of the wheat growth period. We conclude that alternating N mineralization and immobilization in soils receiving poultry litter containing woodchip bedding limited the short-term N supply to wheat.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 740
Author(s):  
Ken Okamoto ◽  
Shinkichi Goto ◽  
Toshihiko Anzai ◽  
Shotaro Ando

Fertilizer application during sugarcane cultivation is a main source of nitrogen (N) loads to groundwater on small islands in southwestern Japan. The aim of this study was to quantify the effect of reducing the N fertilizer application rate on sugarcane yield, N leaching, and N balance. We conducted a sugarcane cultivation experiment with drainage lysimeters and different N application rates in three cropping seasons (three years). N loads were reduced by reducing the first N application rate in all cropping seasons. The sugarcane yields of the treatment to which the first N application was halved (T2 = 195 kg ha−1 N) were slightly lower than those of the conventional application (T1 = 230 kg ha−1 N) in the first and third seasons (T1 = 91 or 93 tons ha−1, T2 = 89 or 87 tons ha−1). N uptake in T1 and T2 was almost the same in seasons 1 (186–188 kg ha−1) and 3 (147–151 kg ha−1). Based on the responses of sugarcane yield and N uptake to fertilizer reduction in two of the three years, T2 is considered to represent a feasible fertilization practice for farmers. The reduction of the first N fertilizer application reduced the underground amounts of N loads (0–19 kg ha−1). However, application of 0 N in the first fertilization would lead to a substantial reduction in yield in all seasons. Reducing the amount of N in the first application (i.e., replacing T1 with T2) improved N recovery by 9.7–11.9% and reduced N leaching by 13 kg ha−1. These results suggest that halving the amount of N used in the first application can improve N fertilizer use efficiency and reduce N loss to groundwater.


Soil Research ◽  
2003 ◽  
Vol 41 (4) ◽  
pp. 741 ◽  
Author(s):  
Xingkai Xu ◽  
Zijian Wang ◽  
Yuesi Wang ◽  
Kazuyuki Inubushi

In recent decades, Chinese agriculturists have used rare-earth-containing fertilisers as basal fertilisers together with N fertilisers (e.g. urea). We studied urea hydrolysis and its hydrolysis products in a laboratory experiment using urea-N fertiliser with rare earths at rates from 0.5 to 50% (w/w). The results indicated that application of rare earths at a high rate could result in a short-term inhibition of urea hydrolysis and an increase in soil (NH4+ + NO3– + NO2–)-N content. When the application rate of rare earths was higher than 5% of the applied urea-N (corresponding to 10 mg/kg soil), soil exchangeable NH4+-N content increased significantly following the hydrolysis of the applied urea. Increasing the application rate of rare earths appeared to reduce the content of soil urea-derived (NO3– + NO2–)-N. A substantial reduction in soil pH was found immediately after application of rare earths and urea. We conclude that application of rare earths at >10 mg/kg may lead to a substantial increase in the content of urea-derived N in the soil, via the inhibition of urea hydrolysis and nitrification.


2021 ◽  
Author(s):  
María Martínez-Mena ◽  
Carolina Boix-Fayos ◽  
Efrain Carrillo-López ◽  
Elvira Díaz-Pereira ◽  
Raúl Zornoza ◽  
...  

Abstract Purpose Diversification practices such as intercropping in woody cropping systems have recently been proposed as a promising management strategy for addressing problems related to soil degradation, climate change mitigation and food security. In this study, we assess the impact of several diversification practices in different management regimes on the main carbon fluxes regulating the soil carbon balance under semiarid Mediterranean conditions. Methods The study was conducted in two nearby cropping systems: (i) a low input rainfed almond (Prunus dulcis Mill.) orchard cultivated on terraces and (ii) a levelled intensively irrigated mandarin (Citrus reticulata Blanco) orchard with a street-ridge morphology. The almond trees were intercropped with Capparis spinosa or with Thymus hyemalis While the mandarin trees were intercropped with a mixture of barley and vetch followed by fava bean. Changes caused by crop diversifications on C inputs into the soil and C outputs from the soil were estimated. Results Crop diversification did not affect soil organic carbon stocks but did affect the carbon inputs and outputs regulating the soil carbon balance of above Mediterranean agroecosystems. Crop diversification with perennials in the low-input rainfed woody crop system significantly improved the annual soil C balance in the short-term. However, crop diversification with annual species in the intensively managed woody crop system had not effect on the annual soil C balance. Conclusions Our results highlight the potential of intercropping with perennials in rainfed woody crop systems for climate change mitigation through soil carbon sequestration.


2016 ◽  
Author(s):  
Lénaïc Pardon ◽  
Cécile Bessou ◽  
Nathalie Saint-Geours ◽  
Benoît Gabrielle ◽  
Ni’matul Khasanah ◽  
...  

Abstract. Oil palm is the most rapidly expanding tropical perennial crop. Its cultivation raises environmental concerns, notably related to the use of nitrogen (N) fertilisers and associated pollution and greenhouse gas emissions. While numerous and diverse models exist to estimate N losses from agriculture, very few are available for tropical perennial crops. Moreover, there has been no critical analysis of the performances of existing models in the specific context of tropical perennial cropping systems. We assessed the capacity of 11 models and 29 sub-models to estimate N losses in a typical oil palm plantation over a 25-year-growth cycle, through leaching and runoff, and emissions of NH3, N2, N2O, and NOx. Estimates of total N losses were very variable, ranging from 21 to 139 kg N ha−1 yr−1. On average, 31 % of the losses occurred during the first three years of the cycle. Leaching comprised about 80 % of the losses. Based on a comprehensive Morris sensitivity analysis, the most influential variables were soil clay content, rooting depth and oil palm N uptake. We also compared model estimates with published field measurements. Many challenges remain to model more accurately processes related to the peculiarities of perennial tropical crop systems such as oil palm.


2014 ◽  
Vol 50 (4) ◽  
pp. 549-572 ◽  
Author(s):  
V. S. RATHORE ◽  
N. S. NATHAWAT ◽  
B. MEEL ◽  
B. M. YADAV ◽  
J. P. SINGH

SUMMARYThe choice of an appropriate cropping system is critical to maintaining or enhancing agricultural sustainability. Yield, profitability and water use efficiency are important factors for determining suitability of cropping systems in hot arid region. In a two-year field experiment (2009/10–2010/11) on loam sandy soils of Bikaner, India, the production potential, profitability and water use efficiency (WUE) of five cropping systems (groundnut–wheat, groundnut–isabgol, groundnut–chickpea, cluster bean–wheat and mung bean–wheat) each at six nutrient application rate (NAR) i.e. 0, 25, 50, 75, 100% recommended dose of N and P (NP) and 100% NP + S were evaluated. The cropping systems varied significantly in terms of productivity, profitability and WUEs. Averaged across nutrient application regimes, groundnut–wheat rotation gave 300–1620 kg ha−1 and 957–3365 kg ha−1 higher grain and biomass yields, respectively, than other cropping systems. The mean annual net returns were highest for the mung bean–wheat system, which returned 32–57% higher net return than other cropping systems. The mung bean–wheat and cluster bean–wheat systems had higher WUE in terms of yields than other cropping systems. The mung bean–wheat system recorded 35–63% higher WUE in monetary terms compared with other systems. Nutrients application improved yields, profit and WUEs of cropping systems. Averaged across years and cropping systems, the application of 100% NP improved grain yields, returns and WUE by 1.7, 3.9 and 1.6 times than no application of nutrients. The results suggest that the profitability and WUEs of crop production in this hot arid environment can be improved, compared with groundnut–wheat cropping, by substituting groundnut by mung bean and nutrients application.


2009 ◽  
Vol 147 (3) ◽  
pp. 303-312 ◽  
Author(s):  
Q. JING ◽  
H. VAN KEULEN ◽  
H. HENGSDIJK ◽  
W. CAO ◽  
P. S. BINDRABAN ◽  
...  

SUMMARYAbout 0·10 of the food supply in China is produced in rice–wheat (RW) cropping systems. In recent decades, nitrogen (N) input associated with intensification has increased much more rapidly than N use in these systems. The resulting nitrogen surplus increases the risk of environmental pollution as well as production costs. Limited information on N dynamics in RW systems in relation to water management hampers development of management practices leading to more efficient use of nitrogen and water. The present work studied the effects of N and water management on yields of rice and wheat, and nitrogen use efficiencies (NUEs) in RW systems. A RW field experiment with nitrogen rates from 0 to 300 kg N/ha with continuously flooded and intermittently irrigated rice crops was carried out at the Jiangpu experimental station of Nanjing Agricultural University of China from 2002 to 2004 to identify improved nitrogen management practices in terms of land productivity and NUE.Nitrogen uptake by rice and wheat increased with increasing N rates, while agronomic NUE (kg grain/kg N applied) declined at rates exceeding 150 kg N/ha. The highest combined grain yields of rice and wheat were obtained at 150 and 300 kg N/ha per season in rice and wheat, respectively. Carry-over of residual N from rice to the subsequent wheat crop was limited, consistent with low soil nitrate after rice harvest. Total soil N hardly changed during the experiment, while soil nitrate was much lower after wheat than after rice harvest. Water management did not affect yield and N uptake by rice, but apparent N recovery was higher under intermittent irrigation (II). In one season, II management in rice resulted in higher yield and N uptake in the subsequent wheat season. Uptake of indigenous soil N was much higher in rice than in wheat, while in rice it was much higher than values reported in the literature, which may have consequences for nitrogen fertilizer recommendations based on indigenous N supply.


Sign in / Sign up

Export Citation Format

Share Document