scholarly journals Antimicrobial Use and Antimicrobial Resistance Indicators—Integration of Farm-Level Surveillance Data From Broiler Chickens and Turkeys in British Columbia, Canada

Author(s):  
Agnes Agunos ◽  
Sheryl P. Gow ◽  
David F. Léger ◽  
Carolee A. Carson ◽  
Anne E. Deckert ◽  
...  
Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1491
Author(s):  
Agnes Agunos ◽  
Sheryl P. Gow ◽  
Anne E. Deckert ◽  
David F. Léger

Using the methodology developed for integrated analysis and reporting of antimicrobial use (AMU) and antimicrobial resistance (AMR) data, farm-level surveillance data were synthesized and integrated to assess trends and explore potential AMU and AMR associations. Data from broiler chicken flocks (n = 656), grower–finisher pig herds (n = 462) and turkey flocks (n = 339) surveyed by the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) at the farm-level (2015–2019) were used. The analyses showed a reduction in mean flock/herd level number of defined daily doses using Canadian standards (nDDDvetCA) adjusted for kg animal biomass that coincided with the decline in % resistance in the three species. This was noted in most AMU-AMR pairs studied except for ciprofloxacin resistant Campylobacter where resistance continued to be detected (moderate to high levels) despite limited fluoroquinolone use. Noteworthy was the significantly negative association between the nDDDvetCA/kg animal biomass and susceptible Escherichia coli (multispecies data), an early indication that AMU stewardship actions are having an impact. However, an increase in the reporting of diseases in recent years was observed. This study highlighted the value of collecting high-resolution AMU surveillance data with animal health context at the farm-level to understand AMR trends, enable data integration and measure the impact of AMU stewardship actions.


Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1492
Author(s):  
Agnes Agunos ◽  
Sheryl P. Gow ◽  
Anne E. Deckert ◽  
Grace Kuiper ◽  
David F. Léger

This study explores methodologies for the data integration of antimicrobial use (AMU) and antimicrobial resistance (AMR) results within and across three food animal species, surveyed at the farm-level by the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS). The approach builds upon existing CIPARS methodology and principles from other AMU and AMR surveillance systems. Species level data integration involved: (1) standard CIPARS descriptive and temporal analysis of AMU/AMR, (2) synthesis of results, (3) selection of AMU and AMR outcomes for integration, (4) selection of candidate AMU indicators to enable comparisons of AMU levels between species and simultaneous assessment of AMU and AMR trends, (5) exploration of analytic options for studying associations between AMU and AMR, and (6) interpretation and visualization. The multi-species integration was also completed using the above approach. In addition, summarized reporting of internationally-recognized indicators of AMR (i.e., AMR adjusted for animal biomass) and AMU (mg/population correction unit, mg/kg animal biomass) is explored. It is envisaged that this approach for species and multi-species AMU–AMR data integration will be applied to the annual CIPARS farm-level data and progressively developed over time to inform AMU–AMR integrated surveillance best practices for further enhancement of AMU stewardship actions.


2021 ◽  
Vol 8 (6) ◽  
pp. 111
Author(s):  
Md. Abul Kalam ◽  
Md. Abdul Alim ◽  
Shahanaj Shano ◽  
Md. Raihan Khan Nayem ◽  
Md. Rahim Badsha ◽  
...  

Poultry production has boomed in Bangladesh in recent years. The poultry sector has contributed significantly to meet the increased demand for animal source proteins in the country. However, increased use of antimicrobials and antibiotics appeared to be a significant threat to food safety in the poultry sector. The poultry drug and feed sellers are at the frontline position involving selecting and delivering the antimicrobials to the poultry farmers. Studies assessing the poultry drug and feed sellers’ knowledge, attitudes, and practices (KAPs) are limited. The current study aimed to assess the community poultry drug and feed sellers’ KAPs of antimicrobial use (AMU) and antimicrobial resistance (AMR) in some selected areas of Bangladesh. We determined the respondents’ (drug and the feed sellers) KAPs of AMU and AMR using a tested and paper-based questionnaire. The study demonstrated that most respondents have insufficient knowledge, less positive attitudes, and inappropriate practices regarding AMU and AMR. The factor score analysis further showed that the type of respondents and their years of experience, level of education, and training on the drug were the significant factors impacting the current knowledge, attitudes, and practices of AMU and AMR. The adjusted logistic regression analysis revealed that the drug sellers who completed their education up to 12th grade and had training on the drug had adequate knowledge of AMU and AMR. The data also showed that the drug sellers belong to the age group 31–35 and 36–40 years and who completed 12th grade had good attitudes on the same. Likewise, the analysis further determined that drug sellers belonging the age category 18–25 and 26–30 years, and interestingly, the respondents who completed education up to 12th grade, had better practices. Spearman’s rank-order correlation revealed a positive association between each pair of the KAPs scores for the respondents. The correlation was fair between knowledge–attitudes, knowledge–practices, and attitudes–practices. Based on the current study results, we recommend educational interventions and appropriate training for the poultry drug and feed sellers to raise awareness and to upgrade their current knowledge on the appropriate use of antimicrobials. This will ultimately lead to reducing the chances of developing AMR in the poultry sectors of the country.


2021 ◽  
Vol 6 (2) ◽  
pp. 60
Author(s):  
Jyoti Acharya ◽  
Maria Zolfo ◽  
Wendemagegn Enbiale ◽  
Khine Wut Yee Kyaw ◽  
Meika Bhattachan ◽  
...  

Antimicrobial resistance (AMR) is a global problem, and Nepal is no exception. Countries are expected to report annually to the World Health Organization on their AMR surveillance progress through a Global Antimicrobial Resistance Surveillance System, in which Nepal enrolled in 2017. We assessed the quality of AMR surveillance data during 2019–2020 at nine surveillance sites in Province 3 of Nepal for completeness, consistency, and timeliness and examined barriers for non-reporting sites. Here, we present the results of this cross-sectional descriptive study of secondary AMR data from five reporting sites and barriers identified through a structured questionnaire completed by representatives at the five reporting and four non-reporting sites. Among the 1584 records from the reporting sites assessed for consistency and completeness, 77–92% were consistent and 88–100% were complete, with inter-site variation. Data from two sites were received by the 15th day of the following month, whereas receipt was delayed by a mean of 175 days at three other sites. All four non-reporting sites lacked dedicated data personnel, and two lacked computers. The AMR surveillance data collection process needs improvement in completeness, consistency, and timeliness. Non-reporting sites need support to meet the specific requirements for data compilation and sharing.


2006 ◽  
Vol 27 (10) ◽  
pp. 1088-1095 ◽  
Author(s):  
Alan J. Zillich ◽  
Jason M. Sutherland ◽  
Stephen J. Wilson ◽  
Daniel J. Diekema ◽  
Erika J. Ernst ◽  
...  

Objective.Clinical practice guidelines and recommended practices to control use of antibiotics have been published, but the effect of these practices on antimicrobial resistance (AMR) rates in hospitals is unknown. The objective of this study was to examine relationships between antimicrobial use control strategies and AMR rates in a national sample of US hospitals.Design.Cross-sectional, stratified study of a nationally representative sample of US hospitals.Methods.A survey instrument was sent to the person responsible for infection control at a sample of 670 US hospitals. The outcome was current prevalences of 4 epidemiologically important, drug-resistant pathogens, considered concurrently: methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci, ceftazidime-resistant Klebsiella species, and quinolone (ciprofloxacin)-resistant Escherichia coli Five independent variables regarding hospital practices were selected from the survey: the extent to which hospitals (1) implement practices recommended in clinical practice guidelines and ensure best practices for antimicrobial use, (2) disseminate information on clinical practice guidelines for antimicrobial use, (3) use antimicrobial-related information technology, (4) use decision support tools, and (5) communicate to prescribers about antimicrobial use. Control variables included the hospitals' number of beds, teaching status, Veterans Affairs status, geographic region, and number of long-term care beds; and the presence of an intensive care unit, a burn unit, or transplant services. A generalized estimating equation modeled all resistance rates simultaneously to identify overall predictors of AMR levels at the facility.Results.Completed survey instruments were returned by 448 hospitals (67%). Four antimicrobial control measures were associated with higher prevalence of AMR. Implementation of recommended practices for antimicrobial use (P< .01) and optimization of the duration of empirical antibiotic prophylaxis (P<.01) were associated with a lower prevalence of AMR. Use of restrictive formularies (P = .05) and dissemination of clinical practice guideline information (P<.01) were associated with higher prevalence of AMR. Number of beds and Veterans Affairs status were also associated with higher AMR rates overall.Conclusions.Implementation of guideline-recommended practices to control antimicrobial use and optimize the duration of empirical therapy appears to help control AMR rates in US hospitals. A longitudinal study would confirm the results of this cross-sectional study. These results highlight the need for systems interventions and reengineering to ensure more-consistent application of guideline-recommended measures for antimicrobial use.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 454
Author(s):  
Robinson H. Mdegela ◽  
Elibariki R. Mwakapeje ◽  
Bachana Rubegwa ◽  
Daniel T. Gebeyehu ◽  
Solange Niyigena ◽  
...  

All infections are potentially curable as long as the etiological agents are susceptible to antimicrobials. The increased rate at which antimicrobials are becoming ineffective is a global health risk of increasing concern that threatens withdrawal of beneficial antimicrobials for disease control. The increased demand for food of animal origin, in particular eggs, meat and milk has led to intensification and commercial production systems where excessive use and misuse of antimicrobials may prevail. Antimicrobials, handled and used by farmers and animal attendants with no formal education, may be predisposed to incorrect dosages, misuse, incorrect applications and non-adherence to withdrawal periods. This study was conducted to assess the regulatory roles and governance of antimicrobials, establish the pattern and extent of their use, evaluate the antimicrobial residues and resistance in the food animals and crop agriculture value chains, and relate these findings to existing strategies in place for combating the emergence of antimicrobial resistance in Tanzania. A multimethod approach (desk review, field study and interviews) was used. Relevant establishments were also visited. High levels of resistance to penicillin G, chloramphenicol, streptomycin and oxytetracycline have been reported, especially for Actinobacter pyogenes, Staphylococcus hyicus, Staphylococcus intermedius and Staphylococcus aureus from dairy cattle with mastitis and in humans. Similar trends were found in poultry where eggs and meat are contaminated with Escherichia coli strains resistant to amoxicillin + clavulanate, sulphamethoxazole and neomycin. An increasing trend of emerging multidrug resistant E. coli, Klebsiella pneumoniae, Staphylococcus aureus and Salmonella was also found in food animals. An increase in methicillin resistant Staphlococcus aureus (MRSA) and extended-spectrum beta-lactamase (ESBL) in the livestock sector in Tanzania have been reported. The pathogens isolated in animals were resistant to ampicillin, augmentin, gentamicin, co-trimoxazole, tetracycline, amoxicillin, streptomycin, nalidixic acid, azithromycin, chloramphenicol, tylosin, erythromycin, cefuroxime, norfloxacin and ciprofloxacin. An increased usage of antimicrobials for prophylaxis, and therapeutics against pathogens and for growth promotion in livestock, aquaculture and crop production were observed. A One Health strategic approach is advocated to combat antimicrobial resistance (AMR) in the food and agriculture sectors in Tanzania. Practical recommendations include (a) legislation review and implementation; (b) antimicrobial use (AMU), AMR and antimicrobial residue (AR) awareness and advocacy among stakeholders along the value chain; (c) strengthening of surveillance and monitoring programs for AMU, AMR and AR; (d) enhanced development and use of rapid and innovative diagnostic tests and the promotion of biosecurity principles; and (e) good husbandry practices. The utilization of this information to improve public health policies and reduce the burden of AMR will be beneficial.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Abdurrahman Hassan Jibril ◽  
Iruka N. Okeke ◽  
Anders Dalsgaard ◽  
John Elmerdahl Olsen

Abstract Background Antimicrobial resistance (AMR) is a global health threat affecting treatment outcome in animals and humans. A pre-requisite for development of AMR reduction strategies is knowledge of antimicrobial use patterns, and how these affect resistance development. The aim of this study was to determine antimicrobial usage (AMU) and whether such usage was associated with AMR in Salmonella from poultry farms in Northwest Nigeria. Results Fifteen (37%) of antimicrobial products observed contained compounds that are of highest priority and critically important for human medicine. Broilers chicken consumed higher (28 ± 14 mg/kg active ingredients) amounts of antimicrobials compared to layers (13 ± 8 mg/kg) per week (p = 0.0009). Surprisingly, chickens raised under backyard system consumed higher amounts of antimicrobials (34 ± 7 mg/kg) than poultry in other systems (p = 0.02). High levels of resistance to tetracycline (58%), sulphonamides (65%), ciprofloxacin (46%) and gentamicin (42%) correlated with high farm level usage of these antimicrobials, and there was a strong correlation (r = 0.9) between farm usage and resistance of isolates to the same antimicrobials (p = 0.03). Conclusion High AMU, including use of highest priority critically important antimicrobials was observed at poultry farms in Northwest Nigeria. AMU correlated with high levels of resistance. Communication of prudent use of antimicrobials to farmers and regulation to obtain reduction in AMU should be a priority.


2009 ◽  
Vol 36 (10) ◽  
pp. 665-669 ◽  
Author(s):  
Sabrina Plitt ◽  
Curtiss Boyington ◽  
Karen Sutherland ◽  
Marguerite Lovgren ◽  
Peter Tilley ◽  
...  

2007 ◽  
Vol 73 (20) ◽  
pp. 6566-6576 ◽  
Author(s):  
Moussa S. Diarra ◽  
Fred G. Silversides ◽  
Fatoumata Diarrassouba ◽  
Jane Pritchard ◽  
Luke Masson ◽  
...  

ABSTRACT The effects of feed supplementation with the approved antimicrobial agents bambermycin, penicillin, salinomycin, and bacitracin or a combination of salinomycin plus bacitracin were evaluated for the incidence and distribution of antibiotic resistance in 197 commensal Escherichia coli isolates from broiler chickens over 35 days. All isolates showed some degree of multiple antibiotic resistance. Resistance to tetracycline (68.5%), amoxicillin (61.4%), ceftiofur (51.3%), spectinomycin (47.2%), and sulfonamides (42%) was most frequent. The levels of resistance to streptomycin, chloramphenicol, and gentamicin were 33.5, 35.5, and 25.3%, respectively. The overall resistance levels decreased from day 7 to day 35 (P < 0.001). Comparing treatments, the levels of resistance to ceftiofur, spectinomycin, and gentamicin (except for resistance to bacitracin treatment) were significantly higher in isolates from chickens receiving feed supplemented with salinomycin than from the other feeds (P < 0.001). Using a DNA microarray analysis capable of detecting commonly found antimicrobial resistance genes, we characterized 104 tetracycline-resistant E. coli isolates from 7- to 28-day-old chickens fed different growth promoters. Results showed a decrease in the incidence of isolates harboring tet(B), bla TEM, sulI, and aadA and class 1 integron from days 7 to 35 (P < 0.01). Of the 84 tetracycline-ceftiofur-resistant E. coli isolates, 76 (90.5%) were positive for bla CMY-2. The proportions of isolates positive for sulI, aadA, and integron class 1 were significantly higher in salinomycin-treated chickens than in the control or other treatment groups (P < 0.05). These data demonstrate that multiantibiotic-resistant E. coli isolates can be found in broiler chickens regardless of the antimicrobial growth promoters used. However, the phenotype and the distribution of resistance determinants in E. coli can be modulated by feed supplementation with some of the antimicrobial agents used in broiler chicken production.


Sign in / Sign up

Export Citation Format

Share Document