scholarly journals Deltacoronavirus Evolution and Transmission: Current Scenario and Evolutionary Perspectives

2021 ◽  
Vol 7 ◽  
Author(s):  
Anastasia N. Vlasova ◽  
Scott P. Kenney ◽  
Kwonil Jung ◽  
Qiuhong Wang ◽  
Linda J. Saif

Deltacoronavirus (DCoV)–the only coronavirus that can infect multiple species of mammals and birds–was initially identified in several avian and mammalian species, including pigs, in China in 2009–2011. Porcine DCoV has since spread worldwide and is associated with multiple outbreaks of diarrheal disease of variable severity in farmed pigs. In contrast, avian DCoV is being reported in wild birds in different countries without any evidence of disease. The DCoV transboundary nature and the recent discovery of its remarkably broad reactivity with its cellular receptor–aminopeptidase N (APN)–from different species emphasize its epidemiological relevance and necessitate additional research. Further, the ability of porcine DCoV to infect and cause disease in chicks and turkey poults and gnotobiotic calves is suggestive of its increased potential for interspecies transmission or of its avian origin. Whether, porcine DCoVs were initially acquired by one or several mammalian species from birds and whether avian and porcine DCoVs continue co-evolving with frequent spillover events remain to be major unanswered questions. In this review, we will discuss the current information on the prevalence, genetic diversity, and pathogenic potential of porcine and avian DCoVs. We will also analyze the existing evidence of the ongoing interspecies transmission of DCoVs that may provide novel insights into their complex evolution.

Author(s):  
C. Joaquín Cáceres ◽  
Daniela S. Rajao ◽  
Daniel R. Perez

Influenza A viruses (IAV) are widespread viruses affecting avian and mammalian species worldwide. Outbreaks of IAV in poultry are usually associated with substantial morbidity and mortality, significantly affecting the poultry industry and food security. IAVs from avian species can be transmitted to mammals including humans and, thus, they are of inherent pandemic concern. Most of the efforts to understand the pathogenicity and transmission of avian origin IAVs have been focused on H5 and H7 subtypes due to their highly pathogenic phenotype in poultry. However, IAV of the H9 subtype that circulate endemically in poultry flocks in some regions of the world have also been associated with cases of zoonotic infections. As a result, the World Health Organization includes avian origin H9N2 IAV among the top in the list of IAVs of pandemic concern. In this review, we discuss the interspecies transmission of H9N2 between avian and mammalian species and the molecular factors that are thought relevant for this spillover. Additionally, we discuss factors that have been associated with the ability of these viruses to transmit through the respiratory route in mammalian species.


2021 ◽  
Author(s):  
Arkaprabha Banerjee ◽  
David E Nelson

Abstract Multiple species of obligate intracellular bacteria in the genus Chlamydia are important veterinary and/or human pathogens. These pathogens all share similar biphasic developmental cycles and transition between intracellular vegetative reticulate bodies and infectious elementary forms, but vary substantially in their host preferences and pathogenic potential. A lack of tools for genetic engineering of these organisms has long been an impediment to the study of their biology and pathogenesis. However, the refinement of approaches developed in C. trachomatis over the last ten years, and adaptation of some of these approaches to other Chlamydia spp. in just the last few years, has opened exciting new possibilities for studying this ubiquitous group of important pathogens.


2020 ◽  
Author(s):  
Miguel Araujo-Voces ◽  
Victor Quesada

Abstract Background Through its ability to open pores in cell membranes, perforin-1 plays a key role in the immune system. Consistent with this role, the gene encoding perforin shows hallmarks of complex evolutionary events, including amplification and pseudogenization, in multiple species. A large proportion of these events occurred in phyla for which scarce genomic data were available. However, recent large-scale genomics projects have added a wealth of information on those phyla. Using this input, we annotated perforin-1 homologs in more than eighty species including mammals, reptiles, birds, amphibians and fishes. Results We have annotated more than 400 perforin genes in all groups studied. Most mammalian species only have one perforin locus, which may contain a related pseudogene. However, we found four independent small expansions in unrelated members of this class. We could reconstruct the full-length coding sequences of only a few avian perforin genes, although we found incomplete and truncated forms of these gene in other birds. In the rest of reptilia, perforin-like genes can be found in at least three different loci containing up to twelve copies. Notably, mammals, non-avian reptiles, amphibians, and possibly teleosts share at least one perforin-1 locus as assessed by flanking genes. Finally, fish genomes contain multiple perforin loci with varying copy numbers and diverse exon/intron patterns. We have also found evidence for shorter genes with high similarity to the C2 domain of perforin in several teleosts. A preliminary analysis suggests that these genes arose at least twice during evolution from perforin-1 homologs. Conclusions The assisted annotation of new genomic assemblies shows complex patterns of birth-and-death events in the evolution of perforin. These events include duplication/pseudogenization in mammals, multiple amplifications and losses in reptiles and fishes and at least one case of partial duplication with a novel start codon in fishes.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Miguel Araujo-Voces ◽  
Víctor Quesada

Abstract Background Through its ability to open pores in cell membranes, perforin-1 plays a key role in the immune system. Consistent with this role, the gene encoding perforin shows hallmarks of complex evolutionary events, including amplification and pseudogenization, in multiple species. A large proportion of these events occurred in phyla for which scarce genomic data were available. However, recent large-scale genomics projects have added a wealth of information on those phyla. Using this input, we annotated perforin-1 homologs in more than eighty species including mammals, reptiles, birds, amphibians and fishes. Results We have annotated more than 400 perforin genes in all groups studied. Most mammalian species only have one perforin locus, which may contain a related pseudogene. However, we found four independent small expansions in unrelated members of this class. We could reconstruct the full-length coding sequences of only a few avian perforin genes, although we found incomplete and truncated forms of these gene in other birds. In the rest of reptilia, perforin-like genes can be found in at least three different loci containing up to twelve copies. Notably, mammals, non-avian reptiles, amphibians, and possibly teleosts share at least one perforin-1 locus as assessed by flanking genes. Finally, fish genomes contain multiple perforin loci with varying copy numbers and diverse exon/intron patterns. We have also found evidence for shorter genes with high similarity to the C2 domain of perforin in several teleosts. A preliminary analysis suggests that these genes arose at least twice during evolution from perforin-1 homologs. Conclusions The assisted annotation of new genomic assemblies shows complex patterns of birth-and-death events in the evolution of perforin. These events include duplication/pseudogenization in mammals, multiple amplifications and losses in reptiles and fishes and at least one case of partial duplication with a novel start codon in fishes.


2019 ◽  
Vol 34 (5) ◽  
pp. 497-514 ◽  
Author(s):  
Richard E. Kronauer ◽  
Melissa A. St. Hilaire ◽  
Shadab A. Rahman ◽  
Charles A. Czeisler ◽  
Elizabeth B. Klerman

Light is the most effective environmental stimulus for shifting the mammalian circadian pacemaker. Numerous studies have been conducted across multiple species to delineate wavelength, intensity, duration, and timing contributions to the response of the circadian pacemaker to light. Recent studies have revealed a surprising sensitivity of the human circadian pacemaker to short pulses of light. Such responses have challenged photon counting–based theories of the temporal dynamics of the mammalian circadian system to both short- and long-duration light stimuli. Here, we collate published light exposure data from multiple species, including gerbil, hamster, mouse, and human, to investigate these temporal dynamics and explore how the circadian system integrates light information at both short- and long-duration time scales to produce phase shifts. Based on our investigation of these data sets, we propose 3 new interpretations: (1) intensity and duration are independent factors of total phase shift magnitude, (2) the possibility of a linear/log temporal function of light duration that is universal for all intensities for durations less than approximately 12 min, and (3) a potential universal minimum light duration of ~0.7 sec that describes a “dead zone” of light stimulus. We show that these properties appear to be consistent across mammalian species. These interpretations, if confirmed by further experiments, have important practical implications in terms of understanding the underlying physiology and for the design of lighting regimens to reset the mammalian circadian pacemaker.


Animals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1769
Author(s):  
Agata Szczerba ◽  
Takashi Kuwana ◽  
Michelle Paradowska ◽  
Marek Bednarczyk

The present study had two aims: (1) To develop a culture system that imitates a normal physiological environment of primordial germ cells (PGCs). There are two types of PGCs in chicken: Circulating blood (cPGCs) and gonadal (gPGCs). The culture condition must support the proliferation of both cPGCs and gPGCs, without affecting their migratory properties and must be deprived of xenobiotic factors, and (2) to propose an easy-to-train, nonlabeling optical technique for the routine identification of live PGCs. To address the first aim, early chicken embryo’s feeder cells were examined instead of using feeder cells from mammalian species. The KAv-1 medium at pH 8.0 with the addition of bFGF (basic fibroblast growth factor) was used instead of a conventional culture medium (pH approximately 7.2). Both cPGCs and gPGCs proliferated in vitro and retained their migratory ability after 2 weeks of culture. The cultivated cPGCs and gPGCs colonized the right and/or left gonads of the recipient male and female embryos. To address the second aim, we demonstrated a simple and rapid method to identify live PGCs as bright cells under darkfield illumination. The PGCs rich in lipid droplets in their cytoplasm highly contrasted with the co-cultured feeder layer and other cell populations in the culture.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250016
Author(s):  
Arielli Fabrício Machado ◽  
Camila Duarte Ritter ◽  
Cleuton Lima Miranda ◽  
Yennie Katarina Bredin ◽  
Maria João Ramos Pereira ◽  
...  

Much evidence suggests that Amazonia and the Atlantic Forest were connected through at least three dispersion routes in the past: the Eastern route, the central route, and the Western route. However, few studies have assessed the use of these routes based on multiple species. Here we present a compilation of mammal species that potentially have dispersed between the two forest regions and which may serve to investigate these connections. We evaluate the present-day geographic distributions of mammals occurring in both Amazonia and the Atlantic Forest and the likely connective routes between these forests. We classified the species per habitat occupancy (strict forest specialists, species that prefer forest habitat, or generalists) and compiled the genetic data available for each species. We found 127 mammalian species presently occurring in both Amazonia and the Atlantic Forest for which, substantial genetic data was available. Hence, highlighting their potential for phylogeographic studies investigating the past connections between the two forests. Differently from what was previously proposed, the present-day geographic distribution of mammal species found in both Amazonia and the Atlantic Forest points to more species in the eastern portion of the dry diagonal (and adjoining forested habitats). The Central route was associated with the second most species. Although it remains to be seen how this present-day geography reflects the paleo dispersal routes, our results show the potential of using mammal species to investigate and bring new insights about the past connections between Amazonia and the Atlantic Forest.


2020 ◽  
Vol 101 (10) ◽  
pp. 1027-1036
Author(s):  
Hayato Harima ◽  
Michihito Sasaki ◽  
Masahiro Kajihara ◽  
Gabriel Gonzalez ◽  
Edgar Simulundu ◽  
...  

Mammalian orthoreovirus (MRV) has been identified in humans, livestock and wild animals; this wide host range allows individual MRV to transmit into multiple species. Although several interspecies transmission and genetic reassortment events of MRVs among humans, livestock and wildlife have been reported, the genetic diversity and geographic distribution of MRVs in Africa are poorly understood. In this study, we report the first isolation and characterization of MRVs circulating in a pig population in Zambia. In our screening, MRV genomes were detected in 19.7 % (29/147) of faecal samples collected from pigs by reverse transcription PCR. Three infectious MRV strains (MRV-85, MRV-96 and MRV-117) were successfully isolated, and their complete genomes were sequenced. Recombination analyses based on the complete genome sequences of the isolated MRVs demonstrated that MRV-96 shared the S3 segment with a different MRV isolated from bats, and that the L1 and M3 segments of MRV-117 originated from bat and human MRVs, respectively. Our results suggest that the isolated MRVs emerged through genetic reassortment events with interspecies transmission. Given the lack of information regarding MRVs in Africa, further surveillance of MRVs circulating among humans, domestic animals and wildlife is required to assess potential risk for humans and animals.


1991 ◽  
Vol 37 (3) ◽  
pp. 411-414 ◽  
Author(s):  
Anders Larsson ◽  
Alex Karlsson-Parra ◽  
J Sjöquist

Abstract Rheumatoid factor (RF) is a major source of interference in many immunoassays. Most immunoassays use mammalian polyclonal or monoclonal antibodies, and RF can react with IgG from mammalian species, thus causing false-positive results. In this work we have studied RF interference in a sandwich ELISA, where RF in the sample may react with both the capture antibody and the detection antibody to give a false-positive reaction. We show that rheumatoid factors do not react with chicken IgY; if the capture antibody or detection antibody (or both) is of avian origin, the interference of RF or other anti-IgG antibodies in sandwich ELISA can be avoided.


2013 ◽  
Vol 94 (4) ◽  
pp. 738-748 ◽  
Author(s):  
Ying Tao ◽  
Mang Shi ◽  
Christina Conrardy ◽  
Ivan V. Kuzmin ◽  
Sergio Recuenco ◽  
...  

Polyomaviruses (PyVs) have been identified in a wide range of avian and mammalian species. However, little is known about their occurrence, genetic diversity and evolutionary history in bats, even though bats are important reservoirs for many emerging viral pathogens. This study screened 380 specimens from 35 bat species from Kenya and Guatemala for the presence of PyVs by semi-nested pan-PyV PCR assays. PyV DNA was detected in 24 of the 380 bat specimens. Phylogenetic analysis revealed that the bat PyV sequences formed 12 distinct lineages. Full-genome sequences were obtained for seven representative lineages and possessed similar genomic features to known PyVs. Strikingly, this evolutionary analysis revealed that the bat PyVs were paraphyletic, suggestive of multiple species jumps between bats and other mammalian species, such that the theory of virus–host co-divergence for mammalian PyVs as a whole could be rejected. In addition, evidence was found for strong heterogeneity in evolutionary rate and potential recombination in a number of PyV complete genomes, which complicates both phylogenetic analysis and virus classification. In summary, this study revealed that bats are important reservoirs of PyVs and that these viruses have a complex evolutionary history.


Sign in / Sign up

Export Citation Format

Share Document