scholarly journals The Bacterial Community in Questing Ticks From Khao Yai National Park in Thailand

2021 ◽  
Vol 8 ◽  
Author(s):  
Ratree Takhampunya ◽  
Jira Sakolvaree ◽  
Nitima Chanarat ◽  
Nittayaphon Youngdech ◽  
Kritsawan Phonjatturas ◽  
...  

Ticks are known vectors for a variety of pathogens including bacteria, viruses, fungi, and parasites. In this study, bacterial communities were investigated in active life stages of three tick genera (Haemaphysalis, Dermacentor, and Amblyomma) collected from Khao Yai National Park in Thailand. Four hundred and thirty-three questing ticks were selected for pathogen detection individually using real-time PCR assays, and 58 of these were subjected to further metagenomics analysis. A total of 62 ticks were found to be infected with pathogenic bacteria, for a 14.3% prevalence rate, with Amblyomma spp. exhibiting the highest infection rate (20.5%), followed by Haemaphysalis spp. (14.5%) and Dermacentor spp. (8.6%). Rickettsia spp. were the most prevalent bacteria (7.9%) found, followed by Ehrlichia spp. (3.2%), and Anaplasma spp. and Borrelia spp. each with a similar prevalence of 1.6%. Co-infection between pathogenic bacteria was only detected in three Haemaphysalis females, and all co-infections were between Rickettsia spp. and Anaplasmataceae (Ehrlichia spp. or Anaplasma spp.), accounting for 4.6% of infected ticks or 0.7% of all examined questing ticks. The prevalence of the Coxiella-like endosymbiont was also investigated. Of ticks tested, 65.8% were positive for the Coxiella-like endosymbiont, with the highest infection rate in nymphs (86.7%), followed by females (83.4%). Among tick genera, Haemaphysalis exhibited the highest prevalence of infection with the Coxiella-like endosymbiont. Ticks harboring the Coxiella-like endosymbiont were more likely to be infected with Ehrlichia spp. or Rickettsia spp. than those without, with statistical significance for Ehrlichia spp. infection in particular (p-values = 0.003 and 0.917 for Ehrlichia spp. and Rickettsia spp., respectively). Profiling the bacterial community in ticks using metagenomics revealed distinct, predominant bacterial taxa in tick genera. Alpha and beta diversities analyses showed that the bacterial community diversity and composition in Haemaphysalis spp. was significantly different from Amblyomma spp. However, when examining bacterial diversity among tick life stages (larva, nymph, and adult) in Haemaphysalis spp., no significant difference among life stages was detected. These results provide valuable information on the bacterial community composition and co-infection rates in questing ticks in Thailand, with implications for animal and human health.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5508 ◽  
Author(s):  
Yan Li ◽  
Yan Kong ◽  
Dexiong Teng ◽  
Xueni Zhang ◽  
Xuemin He ◽  
...  

BackgroundRecently, researches have begun to investigate the microbial communities associated with halophytes. Both rhizobacterial community composition and the environmental drivers of community assembly have been addressed. However, few studies have explored the structure of rhizobacterial communities associated with halophytic plants that are co-occurring in arid, salinized areas.MethodsFive halophytes were selected for study: these co-occurred in saline soils in the Ebinur Lake Nature Reserve, located at the western margin of the Gurbantunggut Desert of Northwestern China. Halophyte-associated bacterial communities were sampled, and the bacterial 16S rDNA V3–V4 region amplified and sequenced using the Illumina Miseq platform. The bacterial community diversity and structure were compared between the rhizosphere and bulk soils, as well as among the rhizosphere samples. The effects of plant species identity and soil properties on the bacterial communities were also analyzed.ResultsSignificant differences were observed between the rhizosphere and bulk soil bacterial communities. Diversity was higher in the rhizosphere than in the bulk soils. Abundant taxonomic groups (from phylum to genus) in the rhizosphere were much more diverse than in bulk soils. Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Planctomycetes were the most abundant phyla in the rhizosphere, while Proteobacteria and Firmicutes were common in bulk soils. Overall, the bacterial community composition were not significantly differentiated between the bulk soils of the five plants, but community diversity and structure differed significantly in the rhizosphere. The diversity ofHalostachys caspica,Halocnemum strobilaceumandKalidium foliatumassociated bacterial communities was lower than that ofLimonium gmeliniiandLycium ruthenicumcommunities. Furthermore, the composition of the bacterial communities ofHalostachys caspicaandHalocnemum strobilaceumwas very different from those ofLimonium gmeliniiandLycium ruthenicum. The diversity and community structure were influenced by soil EC, pH and nutrient content (TOC, SOM, TON and AP); of these, the effects of EC on bacterial community composition were less important than those of soil nutrients.DiscussionHalophytic plant species played an important role in shaping associated rhizosphere bacterial communities. When salinity levels were constant, soil nutrients emerged as key factors structuring bacterial communities, while EC played only a minor role. Pairwise differences among the rhizobacterial communities associated with different plant species were not significant, despite some evidence of differentiation. Further studies involving more halophyte species, and individuals per species, are necessary to elucidate plant species identity effects on the rhizosphere for co-occurring halophytes.


2014 ◽  
Vol 81 (4) ◽  
pp. 1530-1539 ◽  
Author(s):  
Merete Wiken Dees ◽  
Erik Lysøe ◽  
Berit Nordskog ◽  
May Bente Brurberg

ABSTRACTThe phyllosphere is colonized by a wide variety of bacteria and fungi; it harbors epiphytes, as well as plant-pathogenic bacteria and even human pathogens. However, little is known about how the bacterial community composition on leafy greens develops over time. The bacterial community of the leafy-green phyllosphere obtained from two plantings of rocket salad (Diplotaxis tenuifolia) and three plantings of lettuce (Lactuca sativa) at two farms in Norway were profiled by an Illumina MiSeq-based approach. We found that the bacterial richness of theL. sativasamples was significantly greater shortly (3 weeks) after planting than at harvest (5 to 7 weeks after planting) for plantings 1 and 3 at both farms. For the second planting, the bacterial diversity remained consistent at the two sites. This suggests that the effect on bacterial colonization of leaves, at least in part must, be seasonally driven rather than driven solely by leaf maturity. The distribution of phyllosphere communities varied betweenD. tenuifoliaandL. sativaat harvest. The variability between these species at the same location suggests that the leaf-dwelling bacteria are not only passive inhabitants but interact with the host, which shapes niches favoring the growth of particular taxa. This work contributes to our understanding of host plant-specific microbial community structures and shows how these communities change throughout plant development.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hannah E. Pilch ◽  
Andrew J. Steinberger ◽  
Donald C. Sockett ◽  
Nicole Aulik ◽  
Garret Suen ◽  
...  

Abstract Background Sand is often considered the preferred bedding material for dairy cows as it is thought to have lower bacterial counts than organic bedding materials and cows bedded on sand experience fewer cases of lameness and disease. Sand can also be efficiently recycled and reused, making it cost-effective. However, some studies have suggested that the residual organic material present in recycled sand can serve as a reservoir for commensal and pathogenic bacteria, although no studies have yet characterized the total bacterial community composition. Here we sought to characterize the bacterial community composition of a Wisconsin dairy farm bedding sand recycling system and its dynamics across several stages of the recycling process during both summer and winter using 16S rRNA gene amplicon sequencing. Results Bacterial community compositions of the sand recycling system differed by both seasons and stage. Summer samples had higher richness and distinct community compositions, relative to winter samples. In both summer and winter samples, the diversity of recycled sand decreased with time drying in the recycling room. Compositionally, summer sand 14 d post-recycling was enriched in operational taxonomic units (OTUs) belonging to the genera Acinetobacter and Pseudomonas, relative to freshly washed sand and sand from cow pens. In contrast, no OTUs were found to be enriched in winter sand. The sand recycling system contained an overall core microbiota of 141 OTUs representing 68.45% ± 10.33% SD of the total bacterial relative abundance at each sampled stage. The 4 most abundant genera in this core microbiota included Acinetobacter, Psychrobacter, Corynebacterium, and Pseudomonas. Acinetobacter was present in greater abundance in summer samples, whereas Psychrobacter and Corynebacterium had higher relative abundances in winter samples. Pseudomonas had consistent relative abundances across both seasons. Conclusions These findings highlight the potential of recycled bedding sand as a bacterial reservoir that warrants further study.


2020 ◽  
Vol 49 (5) ◽  
pp. 1198-1205
Author(s):  
Jia-Xing Fang ◽  
Su-Fang Zhang ◽  
Fu Liu ◽  
Xun Zhang ◽  
Feng-Bin Zhang ◽  
...  

Abstract The spruce bark beetle (Ips typographus L.) is a destructive pest of Eurasian spruce forests. Although the gut bacteria of this insect are considered to play important roles in its lifecycle, the relationship between I. typographus and its gut bacterial community is poorly characterized. In this study, 16S rRNA gene sequencing was used to determine gut bacterial community composition across successive I. typographus life stages. Responses of the gut bacteria to α-pinene enantiomers were also explored. Ips typographus gut bacterial populations were dominated by the phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, and the relative abundance of these phyla varied across different developmental stages of the beetle. Bacterial species diversity and richness indices increased with developmental stage progression. Relative abundances of the dominant genera, Erwinia (Enterobacteriales: Enterobacteriaceae), Pseudoxanthomonas (Xanthomonadales: Xanthomonadaceae), Serratia (Enterobacteriales: Enterobacteriaceae), and Romboutsia (Clostridiales: Peptostreptococcaceae), also varied across successive I. typographus life stages. Large disparities in the gut bacterial community of male adults were observed when the beetles were treated with S-(–)-α-pinene and R-(+)-α-pinene. The relative abundances of Lactococcus (Lactobacillales: Streptococcaceae) and Lelliottia (Enterobacteriales: Enterobacteriaceae) increased drastically with R-(+)-α-pinene and S-(–)-α-pinene treatment, respectively. This indicated a distinct enantiomer-specific effect of α-pinene on the I. typographus gut bacteria. This study demonstrated the plasticity of gut bacteria during I. typographus development, when α-pinene host monoterpenes are encountered. This study provides new insights into the relationship between ‘I. typographus–gut bacteria’ symbionts and host trees.


2003 ◽  
Vol 40 (11) ◽  
pp. 1531-1548 ◽  
Author(s):  
Bruce W Fouke ◽  
George T Bonheyo ◽  
Beth Sanzenbacher ◽  
Jorge Frias-Lopez

A culture-independent molecular survey indicates that the composition of bacterial communities is distinctly partitioned between travertine depositional facies in the surface drainage system of Spring AT-1 at Angel Terrace, Mammoth Hot Springs, Yellowstone National Park. PCR (polymerase chain reaction) amplification and sequencing of 16S rRNA genes with universally conserved bacterial primers has identified over 553 unique partial and 104 complete gene sequences (derived from more than 14 000 clones), affiliated with 221 unique species that represent 21 bacterial divisions. These sequences exhibited < 12% similarity in bacterial community composition between each of the travertine depositional facies. This implies that relatively little downstream bacterial transport and colonization took place despite the rapid and continuous flow of spring water from the high-temperature to low-temperature facies. These results suggest that travertine depositional facies, which are independently determined by the physical and chemical conditions of the hot spring drainage system, effectively predict bacterial community composition as well as the morphology and chemistry of travertine precipitation.


Author(s):  
Bridget M Whitney ◽  
Sujatha Srinivasan ◽  
Kenneth Tapia ◽  
Eric Munene Muriuki ◽  
Bhavna H Chohan ◽  
...  

Abstract Background The vaginal microbiome plays a key role in women’s reproductive health. Use of exogenous hormones, such as intramuscular depot-medroxyprogesterone acetate (DMPA-IM), may alter the composition of vaginal bacterial community. Methods Vaginal swabs were collected from postpartum Kenyan women initiating DMPA-IM or non-hormonal contraception (non-HC). Bacterial vaginosis was assessed by Nugent score (Nugent-BV) and bacterial community composition was evaluated using broad-range 16S rRNA gene PCR with high-throughput sequencing. Changes in Nugent score, alpha diversity (Shannon diversity index), and total bacterial load between contraceptive groups from enrollment to three-months post-initiation were estimated using multivariable linear mixed effects regression. Results Among 54 HIV-negative women, 33 choosing DMPA-IM and 21 choosing non-HC, Nugent-BV was more common among DMPA-IM users at enrollment. At follow-up, Nugent score had decreased significantly among DMPA-IM users (Δ=-1.89 (95%CI:-3.53, -0.25; p=0.02) while alpha diversity remained stable (Δ=0.03, 95%CI:-0.24, 0.30; p=0.83). Conversely, Nugent score remained relatively stable among non-HC users (Δ=-0.73, 95%CI:-2.18, 0.73; p=0.33) while alpha diversity decreased (Δ=-0.34, 95%CI:-0.67, -0.001; p=0.05). Total bacterial load decreased slightly in DMPA-IM users and increased slightly among non-HC users, resulting in a significant difference in change between the contraceptive groups (difference=-0.64 log10 gene copies/swab, 95%CI:-1.19, -0.08; p=0.02). While significant changes in Nugent score and alpha diversity were observed within contraceptive groups, changes between groups were not significantly different. Conclusions Postpartum vaginal bacterial diversity did not change in DMPA-IM users despite a reduction in Nugent-BV, but decreased significantly among women using non-HC. Choice of contraception may influence Lactobacillus recovery in postpartum women.


2018 ◽  
Author(s):  
Maja Kos Kramar ◽  
Tinkara Tinta ◽  
Davor Lučić ◽  
Alenka Malej ◽  
Valentina Turk

AbstractThis study is the first to investigate bacterial community associated with live medusaAurelia sp. in the Gulf of Trieste (northern Adriatic Sea) using both culture independent and culture-based methods. We have analysed bacterial community composition of different body parts of medusa: exumbrella surface, oral arms (‘outer’ body parts) and of gastric cavity (‘inner’ body part) and investigated possible differences in medusa associated bacterial community structure at the time of jellyfish population peak and during senescent phase at the end of bloom, when jellyfish start to decay. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we demonstrated significant difference between bacterial community associated withAureliaand the ambient seawater bacterial assemblage. Comparing bacterial community composition between differentAureliamedusa body parts, communities differed significantly, especially the one within the gastral cavity. The pronounced difference is dominance ofBetaproteobacteria(Burkholderia, CupriavidusandAchromobacter) in gastral cavity of medusa andAlpha- (Phaeobacter, Ruegeria) andGamma-proteobacteria(Stenotrophomonas, Alteromonas, PseudoalteromonasandVibrio) on ‘outer’ body parts. This suggests that body-part specific bacterial association might have an important functional roles for the host. The results of bacterial isolates showed the dominance ofGammaproeteobacteria, especiallyVibrioandPseudoalteromonasin all body parts. Finally, comparison of medusa associated bacterial community structure, at the time of jellyfish population peak and during senescent phase at the end of bloom showed increased abundance ofGammaproteobacteria, especiallyVibrio. Our results suggest members ofVibriogroup are possible commensal opportunistic visitors, later becoming consumer of moribund jellyfish biomass and that the structure of jellyfish bacterial community might be affected by anthropogenic pollution in the marine environment.


2013 ◽  
Vol 59 (5) ◽  
pp. 324-332 ◽  
Author(s):  
Min Liu ◽  
Yi Dong ◽  
Wuchang Zhang ◽  
Jun Sun ◽  
Feng Zhou ◽  
...  

Bacterial community diversity and the effects of environmental factors on bacterial community composition during 2 spring phytoplankton blooms in the central Yellow Sea were investigated by using denaturing gradient gel electrophoresis (DGGE) and multivariate statistical analysis. The Shannon–Weaver indices (H′) of bacterial diversity from samples at station B23 were higher than those at station B20. Cluster analysis based on DGGE band patterns indicated temporal variations of bacterial community at the 2 bloom stations but a vertical distribution pattern only at station B20. The predominant bacterial groups were affiliated with Alphaproteobacteria, Gammaproteobacteria, Cytophaga–Flavobacterium–Bacteroides, Deltaproteobacteria, and Actinobacteria. The effects of environmental factors on bacterial community were analyzed by canonical correspondence analysis. Bacterial community structures were significantly affected by silicate at station B20 and by Paralia sulcata and Heterocapsa spp. at station B23. From the results, phytoplankton species composition had a significant effect on bacterial community structure during phytoplankton blooms in the central Yellow Sea.


2020 ◽  
Vol 12 (5) ◽  
pp. 1864
Author(s):  
Jiling Cao ◽  
Yuxiong Zheng ◽  
Yusheng Yang

Despite increasing investigations having studied the changing patterns of soil microbial communities along forest plantation development age sequences, the underlying phylogenetic assemblages are seldom studied for microbial community. Here, the soil bacterial taxonomic and phylogenetic diversity as well as the phylogenetic structure were examined to elucidate the community diversity and assembly in three typical ages (young, middle and mature) of Cunninghamia lanceolata plantations, a dominant economic tree species in southern China. Results indicated that the soil bacterial phylogenetic not taxonomic diversity increased with the increasing in stand age. The bacterial community composition differed significantly among the young, middle and mature plantations. Phylogenetic signals showed that bacterial communities were phylogenetically clustered and structured by environmental filtering in all studied plantations. In mature plantation, the effect of environmental filtering becomes stronger and bacteria taxa tend to intraspecific interact more complexly as characterized by co-occurrence network analysis. This suggests that ecological niche-based environmental filtering could be a dominant assembly process that structured the soil bacterial community along age sequences of Cunninghamia lanceolata plantations.


2020 ◽  
Vol 41 (S1) ◽  
pp. s219-s220
Author(s):  
Christine Ganim ◽  
Mustafa Mazher ◽  
Erin Breaker

Background: Hand-hygiene sink drains in healthcare facilities may provide an environment for the survival and dissemination of various multidrug-resistant organisms (MDROs), including carbapenemase-producing Klebsiella pneumoniae (CPKP). We developed a sink model system to establish and test native drinking water biofilms containing CPKP in the p-traps of hand-hygiene sink drains. Methods: A handwashing sink gallery was designed to consist of 6-wall mounted stainless-steel sink basins connected to the same municipal water line. Each sink’s plumbing included a chrome-plated brass p-trap. Healthcare facility conditions were simulated to include handwashing events with the addition of hand-soap and municipal water 4 per day, and nutritional shake (simulating liquid waste) 1 per day. Resultant biofilms in the p-traps of each sink were harvested after 28 days for community analysis. Microbial community analyses were performed on selected biofilm samples using 16S rRNA sequencing of the V4 hypervariable region of genomic DNA. Another experiment evaluated 28-day p-trap biofilm inoculated with CPKP CAV1016 (10 mL 7.010E 7 CFU/mL) and was assessed over 14 days. Heterotrophic plate counts (HPCs) were determined on R2A medium (7 days of incubation at 25C). CPKP was quantified on mEndo selective medium (48 hours of incubation at 36C). Results: Biofilms developed in all p-traps, but biofilm HPC (5.78 mean log CFU/cm2, range 4.35–7.16) and community diversity (15–20 genera per p-trap) varied with sink position. Community analysis showed similarities in bacterial community composition and diversity between sinks 1 and 2, and between sinks 3, 5 and 6, but with differences between the 2 groups. The most abundant family in sinks 3, 5, and 6 was Erythrobacteriaceae (76%, 78%, and 55% of the total reads, respectively), whereas sinks 1 and 2 were dominated by Sphingomonadaceae (63% and 36%) and Methylobacteriaceae (19% and 55%). Also, 16S sequencing revealed the presence of potential opportunistic pathogens in the biofilms, including reads attributed to Pseudomonas and Acinetobacter. CPKP CAV1016 inoculated into 28-day p-trap biofilms colonized and persisted in all 6 sinks for 12 days after inoculation. Conclusions: Despite all 6 sinks sharing an incoming water line, soap, and carbon and energy source, there was a significant variation in the bacterial community composition observed between the sinks. CPKP can colonize and persist in the p-trap biofilms; however, additional work is needed to achieve a reproducible model system. Once this is achieved, the sink gallery will be used to investigate interventions to mitigate colonization or persistence of CPKP in p-trap biofilms.Funding: NoneDisclosures: None


Sign in / Sign up

Export Citation Format

Share Document