scholarly journals A Novel Rotation-Structure Based Stick-Slip Piezoelectric Actuator with High Consistency in Forward and Reverse Motions

Actuators ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 189
Author(s):  
Jizhou Tang ◽  
Jingsong Wei ◽  
Yuming Wang ◽  
Zhi Xu ◽  
Hu Huang

Under the same driving voltage and frequency, the forward and reverse motion inconsistency of stick-slip piezoelectric actuators would bring difficulty for subsequent control. To solve this problem, a rotation-structure based piezoelectric actuator with completely symmetric structure and two driving feet was initially proposed. By testing its output performances under various driving voltages and frequencies, it was confirmed that, although similar speeds could be achieved for forward and reverse motions, the maximum displacement and backward displacement in each step were still quite different. By analyzing the reasons leading to this difference, this actuator was further improved by using only one driving foot. The experimental results showed that the forward and reverse motion consistency of the improved actuator had been significantly improved. The deviation rate was only 1.6%, corresponding to a travel distance of 118.7 μm, obtained under the driving voltage of 100 V and driving frequency of 10 Hz. The comparison with some previously reported actuators further confirmed the advancement of this improved actuator.

Actuators ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 4
Author(s):  
Kang Liang ◽  
Chong Li ◽  
Yujian Tong ◽  
Jiwen Fang ◽  
Wei Zhong

Piezoelectric actuators usually operate under a high frequency driving signal. Here we report a harmonic rotating piezoelectric actuator by coupling a harmonic wave generator and a friction rotor, in which the actuator can be actuated by a low-frequency sinusoidal signal with positive bias. The harmonic wave is generated by a two-stage magnifying mechanism consisting of a displacement amplifier and a harmonic rod. Applying piezoelectricity theory, the actuator’s output characteristic equations are deduced. What is more, the output characteristics of piezoelectric actuators are tested with the established experimental system. Results show that the generated harmonic displacements can drive the actuator to work normally at a driving voltage of larger than 90 V and the maximum total harmonic displacement of the piezoelectric actuator comes up to 427.6 μm under the driving voltage of 150 V. Meanwhile, the error between the measured and calculated values of the harmonic displacement is less than 7%. Furthermore, the rotational speed of the piezoelectric actuator reaches 5.45 rpm/min at 150 V voltage and 5 Hz driving frequency.


2020 ◽  
Vol 91 (10) ◽  
pp. 105005
Author(s):  
Zhi Xu ◽  
Xuan Li ◽  
Kuifeng Wang ◽  
Tianwei Liang ◽  
Jingshi Dong ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yuan Wang ◽  
Minglong Xu ◽  
Shubao Shao ◽  
Siyang Song ◽  
Yan Shao

A novel stick-slip rotary piezoelectric actuator is designed for optical use. The actuator is proposed, fabricated, and tested with the aim of realizing both fine resolution and a long stroke. The dynamic model of the actuator is established, and simulations are performed to discover how the input driving voltage affects the stick-slip motion of the actuator. An experimental system is built to evaluate the performance of the actuator at different frequencies, voltages, and numbers of driving piezoelectric stacks. Experimental results show that the minimal output stepping angle is 3.5 μrad (0.2 millidegrees) under a sawtooth waveform having a voltage of 13 V and frequency of 3000 Hz and that the velocity reaches 0.44 rad/s (25°/s) under a sawtooth waveform having a voltage of 93 V and frequency of 3000 Hz, while the stroke is infinite. The proposed actuator provides stable and accurate rotary motion and realizes a high velocity.


2018 ◽  
Vol 8 (12) ◽  
pp. 2492
Author(s):  
Liling Han ◽  
Liandong Yu ◽  
Chengliang Pan ◽  
Huining Zhao ◽  
Yizhou Jiang

A novel impact two-degree-of-freedom (2-DOF) motor based on the decomposed screw-type motion of a piezoelectric actuator (PA) has been proposed. The fabricated prototype motor has a maximum diameter of 15 mm and a length of 100 mm which can produce a maximum torsional angle of about 1000 μrad and a maximum longitudinal displacement of about 1.03 μm under a saw-shaped driving voltage with 720 Vp-p (peak-to-peak driving voltage). When the axial prepressure generated by the spring is about 1N and the radial prepressure generated by the snap ring is about 14 N, the fabricated motor realizes rotary motion with the driving frequency from 200 Hz to 4 kHz. When the axial prepressure generated by the spring is about 11.7 N and the radial prepressure generated by the snap ring is about 21.1 N, the fabricated motor realizes linear motion with the driving frequency from 2 kHz to 11 kHz. In the experiments, the prototype motor can achieve 9.9 × 105 μrad/s rotary velocity at 2 kHz and it can achieve 2.4 mm/s linear velocity at 11 kHz under the driving voltage of 720 Vp-p.


1999 ◽  
Author(s):  
Donald J. Leo

Abstract Energy expressions for a piezoelectric actuator coupled to a resonant mechanical load are analyzed for the purpose of determining the energy requirements of controlled structures. The analysis illustrates that the energy dissipated within the linear amplifier is a function of four parameters: the driving frequency, the piezoelectric coupling coefficient, the relative stiffness of the actuator and load, and the amplifier supply voltage. The piezoelectric actuator and the mechanical load are assumed to be lossless to highlight the relationship between energy dissipated within the amplifier and the energy stored in the actuator. For a specific frequency, the minimum energy dissipation within the amplifier is equal to twice the stored electrical energy in the piezoelectric when the amplifier voltage is equal to the driving voltage of the actuator. Additional energy is dissipated within the amplifier when the supply voltage is greater than the driving voltage. In the case when the actuator displacement is constant as a function of frequency, the energy dissipation in the amplifier decreases near the resonance of the coupled electromechanical system and reaches a minimum when the piezoelectric charge due to the applied voltage is equal and opposite to the charge induced by the load. The steady-state amplitude of the charge, and hence the actuator current, is equal to zero at this frequency. The results illustrate that energy dissipation is minimized when the actuator is operated at near the resonance or antiresonance of the coupled electromechanical system.


2018 ◽  
Vol 8 (8) ◽  
pp. 1400 ◽  
Author(s):  
Haojie Xia ◽  
Liling Han ◽  
Chengliang Pan ◽  
Huakun Jia ◽  
Liandong Yu

A two-degrees-of-freedom (2-DOF) linear piezoelectric impact drive mechanism (PIDM) is actuated by two independent piezoelectric actuators (PAs). The coupled motion interactions of a two orthogonal DOF linear PIDM with a single friction interface are introduced and analyzed. A complete dynamic model of the 2-DOF PIDM is established with the Karnopp friction model considering the distribution of friction in the x-axis and y-axis. The output displacements of the 2-DOF PIDM and two corresponding independent 1-DOF PIDMs are investigated numerically. When the two input exciting signals of a 2-DOF PIDM have the same driving voltage of 100 V with a duty ratio of 98% at 10 Hz and two 1-DOF PIDMs are driving under the same conditions, the step displacements in the two axes of 2-DOF PIDM are improved compared to the corresponding 1-DOF PIDM. When the two input exciting signals of a 2-DOF PIDM have the same driving voltages of 100 V with a duty ratio of 98% but the driving frequency is 10 Hz in the x-axis and 20 Hz in the y-axis, the results show that the displacement of high frequency achieves a slight decrease and displacement of low frequency shows a large increase compared to the two corresponding 1-DOF PIDMs.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1366
Author(s):  
Wen Wang ◽  
Jiahui Wang ◽  
Ruijin Wang ◽  
Zhanfeng Chen ◽  
Fuming Han ◽  
...  

Piezoelectric actuators are widely used in the field of micro- and nanopositioning due to their high frequency response, high stiffness, and high resolution. However, piezoelectric actuators have hysteresis nonlinearity, which severely affects their positioning accuracy. As the driving frequency increases, the performance of piezoelectric actuators further degrades. In addition, the impact of force on piezoelectric actuators cannot be ignored in practical applications. Dynamic hysteresis with force-voltage coupling makes the hysteresis phenomenon more complicated when force and driving voltage are both applied to the piezoelectric actuator. Existing hysteresis models are complicated, or inaccurate in describing dynamic hysteresis with force-voltage coupling. To solve this problem, a force-voltage-coupled Prandtl–Ishlinskii (FVPI) model is proposed in this paper. First, the influence of driving frequency and dynamic force on the output displacement of the piezoelectric actuators are analyzed. Then, the accuracy of the FVPI model is verified through experiments. Finally, a force integrated direct inverse (F-DI) compensator based on the FVPI model is designed. The experimental results from this study show that the F-DI compensator can effectively suppress dynamic hysteresis with force-voltage coupling of piezoelectric actuators. This model can improve the positioning accuracy of piezoelectric actuators, thereby improving the working accuracy of the micro- or nano-operating system.


2020 ◽  
Vol 25 (3) ◽  
pp. 383-391
Author(s):  
Yanfang Guan ◽  
Xiangxin Meng ◽  
Yansheng Liu ◽  
Mingyang Bai ◽  
Fengqian Xu

The parametric and vibrational characteristics of PZTs (Piezoelectric Transducers) with different diameters before and after coupling are discussed by finite element analysis. It is shown that the vibration stability of the piezoelectric transducer decreases with increasing driving frequency. The PZT's variation of maximum displacement with frequency shows the same trend for different driving conditions according to vibration measurement under conditions of both free and forced vibration (before and after sealing with the pump body). The maximum displacement under forced vibration is less than that under free vibration. The maximum displacement is inversely proportional to the diameter of the transducer and directly proportional to the driving voltage under both free and forced vibration. Micropumps with diffuser/nozzle microvalves are designed and fabricated with different external diameters of the PZTs. Finally, the flow rate and pressure of the micropumps are measured, which are consistent with the vibrational results. Moreover, the maximum displacement is larger under a square-wave driving signal, followed by a sine-wave signal, and then a triangle-wave signal. For a PZT with an external diameter of $12$ mm, the maximum flow rate and pressure value are $150$~$upmu$l/min and $346$ Pa, respectively, under sine-wave driving at $100$ Vpp driving voltage.


Actuators ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 200
Author(s):  
Xiaofeng Yang ◽  
Jinyan Tang ◽  
Wenxin Guo ◽  
Hu Huang ◽  
Haoyin Fan ◽  
...  

Although the stick-slip principle has been widely employed for designing piezoelectric actuators, there still exits an intrinsic drawback, i.e., the backward motion, which significantly affects its output performances and applications. By analyzing the generation mechanism of backward motion in stick-slip piezoelectric actuators, the elliptical trajectory was employed to design a novel stepping piezoelectric actuator free of backward motion. Accordingly, a prototype of piezoelectric actuator was designed, which utilized a flexure hinge mechanism and two vertically arranged piezoelectric stacks to generate the required elliptical trajectory. The compliance matrix method was used to theoretically analyze the flexure hinge mechanism. The theoretical and measured elliptical trajectories under various phase differences were compared, and the phase difference of 45° was selected accordingly. Under a critical relative gap, output performances of the actuator working under the elliptical trajectory were characterized, and then compared with that obtained under the normal stick-slip driving principle. Experimental results indicated that forward and reverse stepping displacement with completely suppressed backward motion could be achieved when employing the elliptical trajectory, verifying its feasibility. This study provides a new strategy for designing a stepping piezoelectric actuator free of backward motion.


2010 ◽  
Vol 24 (13) ◽  
pp. 1373-1376
Author(s):  
MUH-RONG WANG ◽  
TZONG-SHYNG LEU ◽  
YI-JUN SHEN ◽  
WEI-LUNG WENG

This paper investigates the characteristics of a piezoelectric micro-injector for drop-on-demand (DOD) applications. The micro-injector is designed with an inner block inside the chamber to enhance the instability energy for the production of mono-size droplet. The micro-nozzle was fabricated by MEMS processes. The upper chip is a silicon chip with two holes as the inlet and outlet of the liquid matter. A diaphragm is mounted on the center of the upper chip. The lower chip has an orifice of 50µm in diameter. The flow through the chamber is used to promote the refilling mechanism for droplet generation. A piezoelectric actuator operated in push mode (D33) was mounted on the upper chip to drive the liquid through the nozzle. An inner block is designed on the inner side of the upper chip. Results show that the micro-injector with inner block could generate mono-size droplet under the driving voltage ranging from 62.5 to 150 volt at frequency of 3.2 kHz. The droplets size was 60µm with velocity ranging from 3.3 to 4.7 m/s which is higher than the case without inner block. As a comparison, the injection of the micro-injector without inner block needs a much higher driving voltage of 112.5 volt at driving frequency of 9.7kHz. It is concluded that the micro-injector with the inner block performs better than the one without the inner block.


Sign in / Sign up

Export Citation Format

Share Document