scholarly journals Strength Evaluation and Failure Analysis of the Vortex Reducer under Overspeed Condition

Aerospace ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 394
Author(s):  
Mengdi Ma ◽  
Dasheng Wei ◽  
Yanrong Wang ◽  
Di Li ◽  
Hui Zhang

Rotating parts of aeroengines need to have a high speed margin according to the civil aviation airworthiness regulations. Previous studies on burst speed are based on mechanical properties of standard specimens. In this paper, a new method for predicting burst speed by means of a tensile test of a simulative specimen is proposed, and the predicted results are compared with the traditional method. The results show that the stress gradient of the designed simulative specimen and the assessment location of vortex reducer are in good agreement, which indicates that they have similar stress characteristics. The burst speed predicted by the new method is greater than the traditional method. Both prediction methods can provide a reference for such a structure in the design stage. In addition, the overspeed test of a vortex reducer is carried out, and the results verify that it still has sufficient strength reserves at 120% relative speed.

1971 ◽  
Vol 8 (03) ◽  
pp. 327-333
Author(s):  
R. H. Salzman

This paper presents a semi-graphical approach for finding the first critical speed of a stepped shaft with finite bearing stiffness. The method is particularly applicable to high-speed turbine rotors with journal bearings. Using Rayleigh's Method and the exact solution for whirling of a uniform shaft with variable support stiffness, estimates of the lowest critical speed are easily obtained which are useful in the design stage. First critical speeds determined by this method show good agreement with values computed by the Prohl Method for the normal range of bearing stiffness. A criterion is also established for determining if the criticals are "bearing critical speeds" or "bending critical speeds," which is of importance in design. Discusser E. G. Baker


2014 ◽  
Vol 926-930 ◽  
pp. 2173-2176
Author(s):  
Hui Bao

In order to solve the problem that the traditional method on satellite navigation data bit synchronization, frame synchronization is error-prone and of a low speed, a new method is proposed to improve correct rate and to increase the synchronization speed on the system on chip (SOC) which is a flexible software system. It makes use of the property between satellites to keep the correctness and raise the speed. According to the simulation, it is proved that the new method improves the performance of the navigation processing with a high speed.


2012 ◽  
Author(s):  
Michael E. Maddox ◽  
Greg Fitch ◽  
Aaron Kiefer ◽  
Rudolf Mortimer ◽  
Jeffrey Muttart

2008 ◽  
Vol 36 (3) ◽  
pp. 211-226 ◽  
Author(s):  
F. Liu ◽  
M. P. F. Sutcliffe ◽  
W. R. Graham

Abstract In an effort to understand the dynamic hub forces on road vehicles, an advanced free-rolling tire-model is being developed in which the tread blocks and tire belt are modeled separately. This paper presents the interim results for the tread block modeling. The finite element code ABAQUS/Explicit is used to predict the contact forces on the tread blocks based on a linear viscoelastic material model. Special attention is paid to investigating the forces on the tread blocks during the impact and release motions. A pressure and slip-rate-dependent frictional law is applied in the analysis. A simplified numerical model is also proposed where the tread blocks are discretized into linear viscoelastic spring elements. The results from both models are validated via experiments in a high-speed rolling test rig and found to be in good agreement.


Author(s):  
Zhanfeng Zhao ◽  
Dong Zhang ◽  
Zhiquan Zhou
Keyword(s):  

2017 ◽  
Vol 2 (4) ◽  
pp. 25
Author(s):  
L. A. Montoya ◽  
E. E. Rodríguez ◽  
H. J. Zúñiga ◽  
I. Mejía

Rotating systems components such as rotors, have dynamic characteristics that are of great importance to understand because they may cause failure of turbomachinery. Therefore, it is required to study a dynamic model to predict some vibration characteristics, in this case, the natural frequencies and mode shapes (both of free vibration) of a centrifugal compressor shaft. The peculiarity of the dynamic model proposed is that using frequency and displacements values obtained experimentally, it is possible to calculate the mass and stiffness distribution of the shaft, and then use these values to estimate the theoretical modal parameters. The natural frequencies and mode shapes of the shaft were obtained with experimental modal analysis by using the impact test. The results predicted by the model are in good agreement with the experimental test. The model is also flexible with other geometries and has a great time and computing performance, which can be evaluated with respect to other commercial software in the future.


Author(s):  
Emre Kahramanoglu ◽  
Silvia Pennino ◽  
Huseyin Yilmaz

The hydrodynamic characteristics of the planing hulls in particular at the planing regime are completely different from the conventional hull forms and the determination of these characteristics is more complicated. In the present study, calm water hydrodynamic characteristics of planing hulls are investigated using a hybrid method. The hybrid method combines the dynamic trim and sinkage from the Zarnick approach with the Savitsky method in order to calculate the total resistance of the planing hull. Since the obtained dynamic trim and sinkage values by using the original Zarnick approach are not in good agreement with experimental data, an improvement is applied to the hybrid method using a reduction function proposed by Garme. The numerical results obtained by the hybrid and improved hybrid method are compared with each other and available experimental data. The results indicate that the improved hybrid method gives better results compared to the hybrid method, especially for the dynamic trim and resistance. Although the results have some discrepancies with experimental data in terms of resistance, trim and sinkage, the improved hybrid method becomes appealing particularly for the preliminary design stage of the planing hulls.


2021 ◽  
Vol 11 (13) ◽  
pp. 5787
Author(s):  
Toan-Thang Vu ◽  
Thanh-Tung Vu ◽  
Van-Doanh Tran ◽  
Thanh-Dong Nguyen ◽  
Ngoc-Tam Bui

The measurement speed and measurement accuracy of a displacement measuring interferometer are key parameters. To verify these parameters, a fast and high-accuracy motion is required. However, the displacement induced by a mechanical actuator generates disadvantageous features, such as slow motion, hysteresis, distortion, and vibration. This paper proposes a new method for a nonmechanical high-speed motion using an electro-optic modulator (EOM). The method is based on the principle that all displacement measuring interferometers measure the phase change to calculate the displacement. This means that the EOM can be used to accurately generate phase change rather than a mechanical actuator. The proposed method is then validated by placing the EOM into an arm of a frequency modulation interferometer. By using two lock-in amplifiers, the phase change in an EOM and, hence, the corresponding virtual displacement could be measured by the interferometer. The measurement showed that the system could achieve a displacement at 20 kHz, a speed of 6.08 mm/s, and a displacement noise level < 100 pm//√Hz above 2 kHz. The proposed virtual displacement can be applied to determine both the measurement speed and accuracy of displacement measuring interferometers, such as homodyne interferometers, heterodyne interferometers, and frequency modulated interferometers.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4144
Author(s):  
Yatai Ji ◽  
Paolo Giangrande ◽  
Vincenzo Madonna ◽  
Weiduo Zhao ◽  
Michael Galea

Transportation electrification has kept pushing low-voltage inverter-fed electrical machines to reach a higher power density while guaranteeing appropriate reliability levels. Methods commonly adopted to boost power density (i.e., higher current density, faster switching frequency for high speed, and higher DC link voltage) will unavoidably increase the stress to the insulation system which leads to a decrease in reliability. Thus, a trade-off is required between power density and reliability during the machine design. Currently, it is a challenging task to evaluate reliability during the design stage and the over-engineering approach is applied. To solve this problem, physics of failure (POF) is introduced and its feasibility for electrical machine (EM) design is discussed through reviewing past work on insulation investigation. Then the special focus is given to partial discharge (PD) whose occurrence means the end-of-life of low-voltage EMs. The PD-free design methodology based on understanding the physics of PD is presented to substitute the over-engineering approach. Finally, a comprehensive reliability-oriented design (ROD) approach adopting POF and PD-free design strategy is given as a potential solution for reliable and high-performance inverter-fed low-voltage EM design.


1982 ◽  
Vol 104 (4) ◽  
pp. 750-757 ◽  
Author(s):  
C. T. Avedisian

A study of high-pressure bubble growth within liquid droplets heated to their limits of superheat is reported. Droplets of an organic liquid (n-octane) were heated in an immiscible nonvolatile field liquid (glycerine) until they began to boil. High-speed cine photography was used for recording the qualitative aspects of boiling intensity and for obtaining some basic bubble growth data which have not been previously reported. The intensity of droplet boiling was found to be strongly dependent on ambient pressure. At atmospheric pressure the droplets boiled in a comparatively violent manner. At higher pressures photographic evidence revealed a two-phase droplet configuration consisting of an expanding vapor bubble beneath which was suspended a pool of the vaporizing liquid. A qualitative theory for growth of the two-phase droplet was based on assuming that heat for vaporizing the volatile liquid was transferred across a thin thermal boundary layer surrounding the vapor bubble. Measured droplet radii were found to be in relatively good agreement with predicted radii.


Sign in / Sign up

Export Citation Format

Share Document