scholarly journals Biopore-Induced Deep Root Traits of Two Winter Crops

Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 634
Author(s):  
Ning Huang ◽  
Miriam Athmann ◽  
Eusun Han

Deeper root growth can be induced by increased biopore density. In this study, we aimed to compare deep root traits of two winter crops in field conditions in response to altered biopore density as affected by crop sequence. Two fodder crop species—chicory and tall fescue—were grown for two consecutive years as preceding crops (pre-crops). Root traits of two winter crops—barley and canola, which were grown as subsequent crops (post-crops)—were measured using the profile wall and soil monolith method. While barley and canola differed greatly in deep root traits, they both significantly increased rooting density inside biopores by two-fold at soil depths shallower than 100 cm. A similar increase in rooting density in the bulk soil was observed below 100 cm soil depth. As a result, rooting depth significantly increased (>5 cm) under biopore-rich conditions throughout the season of the winter crops. Morphological root traits revealed species-wise variation in response to altered biopore density, in which only barley increased root size under biopore-rich conditions. We concluded that large-sized biopores induce deeper rooting of winter crops that can increase soil resource acquisition potential, which is considered to be important for agricultural systems with less outsourced farm resources, e.g., Organic Agriculture. Crops with contrasting root systems can respond differently to varying biopore density, especially root morphology, which should be taken into account upon exploiting biopore-rich conditions in arable fields. Our results also indicate the need for further detailed research with a greater number of species, varieties and genotypes for functional classification of root plasticity against the altered subsoil structure.

2011 ◽  
Vol 62 (6) ◽  
pp. 496 ◽  
Author(s):  
Y. T. Gan ◽  
B. C. Liang ◽  
L. P. Liu ◽  
X. Y. Wang ◽  
C. L. McDonald

Knowledge on the C : N ratio of crop residues is of great importance for modelling carbon (C) and nitrogen (N) dynamics of agricultural systems. This study determined (i) the C : N ratios in the seed, straw, and roots of selected broadleaf crops and (ii) the root C and N distribution in the 0–100 cm rooting zone. Three oilseed (Brassica napus canola, Brassica juncea mustard, Linum usitatissimum flax), three pulse crops (Cicer arietinum chickpea, Pisum sativum dry pea, Lens culinaris lentil), and spring wheat (Triticum aestivum L.) were grown under field conditions with low- (rainfall only) and high-water (rainfall plus irrigation) availability. Root C mass decreased substantially with rooting depth, with ~58% of root C mass in the top 20 cm of the soil, 78% in the top 40 cm, and 94% in the top 60 cm. Significant differences in root C mass between crop species occurred in the top 20 cm with canola, mustard, and wheat allocating 66% of their root C total, compared with 55% for dry pea, lentil, and flax, and 41% for chickpea. Root N mass followed a similar response to root C. Seed C : N ratios ranged between 6 and 17, whereas straw C : N ranged between 14 and 55, and root C : N between 17 and 75. Under low-water conditions, canola and mustard had a straw C : N of 33, lower than that of flax (38) and wheat (41). Under higher-water availability, however, mustard and wheat had straw C : N ratios at 55, greater than canola, mustard and flax (47). Three pulses had an average straw C : N ratio of 17, significantly lower than 41 for the oilseeds and 32 for wheat. On average, canola, mustard and wheat had greater root C : N ratios (44) than chickpea (33) and lentil (29), with dry pea having a smallest root C : N ratio (18). Root C : N ratios did not change with soil depth. These detailed measurements on the vertical distribution of root C and N as well as C : N ratios for various crops will assist in improving estimates of inputs for C and N cycling studies.


Author(s):  
Philippe Hinsinger ◽  
Michael J. Bell ◽  
John L. Kovar ◽  
Philip J. White

AbstractPlants acquire K+ ions from the soil solution, and this small and dynamic pool needs to be quickly replenished via desorption of surface-adsorbed K from clay minerals and organic matter, by release of interlayer K from micaceous clay minerals and micas, or structural K from feldspars. Because of these chemical interactions with soil solid phases, solution K+ concentration is kept low and its mobility is restricted. In response, plants have evolved efficient strategies of root foraging. Root traits related to root system architecture (root angle and branching), root length and growth, together with root hairs and mycorrhiza-related traits help to determine the capacity of plants to cope with the poor mobility of soil K. Rooting depth is also important, given the potentially significant contribution of subsoil K in many soils. Root-induced depletion of K+ shifts the exchange equilibria, enhancing desorption of K, as well as the release of nonexchangeable, interlayer K from minerals in the rhizosphere. Both these pools can be bioavailable if plant roots can take up significant amounts of K at low concentrations in the soil solution (in the micromolar range). In addition, roots can significantly acidify their environment or release large amounts of organic compounds (exudates). These two processes ultimately promote the dissolution of micas and feldspars in the rhizosphere, contributing to the mining strategy evolved by plants. There are thus several root or rhizosphere-related traits (morphological, physiological, or biochemical) that determine the acquisition of K by crop species and genotypes.


2019 ◽  
Vol 32 (3) ◽  
pp. 176-183
Author(s):  
S. A. Gorbanenko ◽  
Yu. I. Tolkachov

During the archaeological research of the Medjybizh fortress (fig. 1), palaeoethnobotanical materials were found three times in its yard: in 1991, 2013 and 2015. The first definition was made by G. O. Pashkevich. Mostly rye was identified as well as bromus, sorrel and an ergot fungus claviceps purpurea. From materials ща 2015 about 30 ml of grain were provided, mostly rye, which is approximately 1800—2000 grains. This is a sample of the harvest of one year. Single kernels of hulled barley (5); emmer (2) and soft wheat (1) were identified. Weeds are represented by 3 species, they are convolvulus (19), brome grasses (11) and cleavers (7) (figs. 2—4). Identified weeds are concomitant for cultivated cereals and real anthropochores; they may be useful for therapeutic purposes. Brome grass is a winter plant that pollutes crops of winter rye and wheat. Fields pollution indicates a use of old arable fields: the population lived in this place continuously from the eleventh century. Consequently, the fields exploded about 2—3 centuries. Winter crops also show the use of old arable fields. According to the aggregate of weeds, these fields were located on high places with droughty soils. According to the analysis of topography and soil, these fields were in the western sector on the elevated plateau (supposedly the places of Dolzhok and Pereimska Dacha). Find of the rye also indirectly indicates a high level of development of agriculture. While plowing tools from Medzhybizh are unknown, we should assume the use of plow, which is the most progressive form of them.


Geoderma ◽  
2022 ◽  
Vol 409 ◽  
pp. 115642
Author(s):  
Matthieu Forster ◽  
Carolina Ugarte ◽  
Mathieu Lamandé ◽  
Michel-Pierre Faucon

Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1697
Author(s):  
Matthieu Forster ◽  
Carolina Ugarte ◽  
Mathieu Lamandé ◽  
Michel-Pierre Faucon

Compaction due to traffic is a major threat to soil functions and ecosystem services as it decreases both soil pore volume and continuity. The effects of roots on soil structure have previously been investigated as a solution to alleviate compaction. Roots have been identified as a major actor in soil reinforcement and aggregation through the enhancement of soil microbial activity. However, we still know little about the root’s potential to protect soil from compaction during traffic. The objective of this study was to investigate the relationships between root traits and soil physical properties directly after traffic. Twelve crop species with contrasting root traits were grown as monocultures and trafficked with a tractor pulling a trailer. Root traits, soil bulk density, water content and specific air permeability were measured after traffic. The results showed a positive correlation between the specific air permeability and root length density and a negative correlation was found between bulk density and the root carbon/nitrogen ratio. This study provides first insight into how root traits could help reduce the consequences of soil compaction on soil functions. Further studies are needed to identify the most efficient plant species for mitigation of soil compaction during traffic in the field.


Forests ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 42
Author(s):  
Yan Wang ◽  
Zhongyue Li ◽  
Zhengquan Wang ◽  
Jiacun Gu

Absorptive and transport fine roots (diameter ≤ 2 mm) differ greatly in anatomy, morphology, and physiology, as well as their responses to environmental changes. However, it is still not well understood how their functional traits and biomass repartition respond to resource variability associated with increasing soil depth. Herein, we sampled the first five order roots of three hardwoods, i.e., Juglans mandshurica Maxim., Fraxinus mandshurica Rupr., and Phellodendron amurense Rupr. at surface (0–10 cm) and subsurface (20–30 cm) soil layers, respectively, and measured root biomass, anatomy, morphology, chemistry, and physiology at the branch-order level. Based on the anatomical characteristics, absorptive and transport fine roots were identified within each order, and their amounts and functional trait plasticity to soil depth were examined. The results showed that across soil layers, the first three order roots were mainly absorptive roots, while the fourth- and fifth-order roots were transport ones. From surface to subsurface soil layers, both the number and biomass proportion of absorptive fine roots decreased but those of transport fine roots increased. Transport fine root traits were more plastic to soil depth than absorptive ones, especially for the conduit-related traits. Absorptive fine roots in surface soil generally had stronger potential for resource acquisition than those in deeper soil, as indicated by their longer specific root length and greater root branching density. In comparison, transport fine roots in deeper soil were generally enhanced in their transportation function, with wider stele and higher hydraulic conductivity. Our findings suggest that functional specialization via multi-trait plasticity and coordination in both absorptive and transport fine roots along the soil depth would benefit the efficient soil resource exploitation of trees in forest ecosystems.


2020 ◽  
Author(s):  
Daniel Abel ◽  
Felix Pollinger ◽  
Katrin Ziegler ◽  
Heiko Paeth

<p>The EFRE-Project BigData@Geo, founded by the European Union, aims to create highly resolved climate projections for the model region of Lower Franconia in Bavaria, Germany. These projections are analyzed and made available to local stakeholders of agriculture, forestry, and viniculture as well as the public. As recent regional climate models are not dealing with the necessary spatiotemporal resolution the model REMO will be developed in the project‘s frame in cooperation with the Climate Service Center Germany (GERICS).</p><p>For these very high resolutions, besides improvements like the non-hydrostatic atmosphere, higher resolved static land surface parameters, and land use land cover changes, etc., realistic modeling of the soil hydrology becomes absolutely necessary. Therefore, REMO is extended by a 5-layer soil scheme which is a first step to overcome restrictions of the recently used soil hydrology scheme due to the included vertical water flow. Furthermore, the current work also aims to implement lateral water flows between grid cells because this is the only way to model the soil hydrology appropriate to the project‘s question.</p><p>The current model version of REMO includes a bucket scheme that treats the soil hydrology as a single layer. The soil depth is equal to the rooting depth and, thus, depends on the overlying vegetation class. Consequently, the whole soil moisture of the soil is available for transpiration. Evaporation only occurs if the soil moisture reaches at least 90 % of the field capacity.</p><p>The 5-layer scheme has 5 layers with increasing thicknesses for deeper layers. The maximum depth of the soil is at approximately 10 m or the depth of the bedrock. Due to the existence of water below the rooting zone and the processes of capillary rise and percolation more water becomes available for transpiration compared to the bucket scheme. Furthermore, evaporation only occurs if the uppermost layer contains soil moisture which is a more realistic process representation as well.</p><p>First results of the comparison of the two schemes and with observation data in the EURO-CORDEX region and a german subregion are presented. We also show some sensitivity studies of the current improvements to the parameterizations of the 5-layer scheme which are necessary for the goal of incorporation of the lateral flow.</p>


2016 ◽  
Vol 50 (6) ◽  
Author(s):  
Parvaze A. Sofi ◽  
Iram Saba

The present study was undertaken to assess the response of common bean under drought in respect of root traits and biomass partitioning in fifteen common bean genotypes. The basal root whorl number and the number of basal roots was highest in case of WB-185 and lowest in case of SR-1, whereas, the basal root growth angle was highest in case of WB-258 and lowest in case of WB-249. Rooting depth measured as the length of longest root harvested was highest in case of WB-6 (66.2) while as lowest value was recorded for WB-112 (20.4). Dry root weight was highest in case of WB-216 (0.45) and lowest value was recorded for WB-341 (0.22). Similarly leaf biomass was highest in case of WB-6 (0.58) followed by WB-216 (0.58) and the lowest value recorded for WB-1186 (0.12). Shoot dry weight was highest for WB-6 (0.55) followed by WB-216 (0.44) and the lowest value recorded for WB-1186 (0.118). Pod dry weight was highest for WB-489 (2.28) followed by WB-216 (2.19) and the lowest value recorded for WB-83 (0.68).489. Root biomass proportion was highest for WB-195 (18.34) and lowest for WB-489 (10.00). Similarly leaf biomass to total biomass was highest in case of WB-83 (23.19) whereas lowest value was recorded for WB-1186 (7.60). Highest stem biomass proportion was recorded for Arka Anoop (19.19) and the lowest value was recorded for WB-1186 (7.591). Biomass allocation to pods was highest in case of WB-489 (69.92) followed by WB-1186 (68.69) whereas lowest value was recorded for WB-83 (45.40).


2018 ◽  
pp. 72-80
Author(s):  
Osujieke D.N ◽  
Obasi N.S. ◽  
Imadojemu P.E ◽  
Ekawa M. ◽  
Angyu M.D.

The study was aimed at the characterizing and the classifying of soils of Jalingo metropo- lis in Taraba State, North-East Nigeria. Profile pit was dug on each of the three different sites of the study area as identified using free survey. The profile pits were described and sampled bases on horizon differentiation for laboratory analyses. A total of 10 samples were collected. Data generated were analyzed using descriptive statistics to determine their coefficient of variation. The result indicated that the horizons were mostly reddish when moist at different contrasting level. The textural classes were mostly loamy sand while the sub-angular blocky structure was observed in the entire subsurface horizons. The horizons of the pedons were well drained. Sand fraction had means of 826.80 g/kg, 816.80 g/kg and 766.8 g/kg for pedons 1, 2, and 3 respectively. Clay fraction increased in an in- creasing soil depth which formed an argillic horizon. Sand fraction, bulk density and parti- cle density recorded low variation (≥0 % ≤5.22 %) in among the pedons. Soil pH(H2O) had a mean of 6.40 in pedon 1, 6.43 in pedon 2 and 6.41 in pedon 3. Organic carbon ranged from ≥2.0 g/kg ≤0.43 g/kg while cation exchange capacity ranged from ≥4.58 cmol/kg ≤5.01 cmol/kg among the pedons. The percent base saturation had a mean of 66.6 %, 65.1 % and 66 % in pedon 1, 2 and 3. Hence, pedons 1 and 2 were classified as Grossarenic Kandiustalfs (Arenic Lixisols), while pedon 3 was classified as Arenic Kandi- ustalfs (Loamic Lixisols) according to USDA soil taxonomy and correlated with world reference base.


Sign in / Sign up

Export Citation Format

Share Document