scholarly journals Genetic Progress Achieved during 10 Years of Selective Breeding for Honeybee Traits of Interest to the Beekeeping Industry

Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 535
Author(s):  
Ségolène Maucourt ◽  
Frédéric Fortin ◽  
Claude Robert ◽  
Pierre Giovenazzo

Genetic improvement programs have resulted in spectacular productivity gains for most animal species in recent years. The introduction of quantitative genetics and the use of statistical models have played a fundamental role in achieving these advances. For the honeybee (Apis mellifera), genetic improvement programs are still rare worldwide. Indeed, genetic and reproductive characteristics are more complex in honeybees than in other animal species, which presents additional challenges for access genetic selection. In recent years, advances in informatics have allowed statistical modelling of the honeybee, notably with the BLUP-animal model, and access to genetic selection for this species is possible now. The aim of this project was to present the genetic progress of several traits of interest to the Canadian beekeeping industry (hygienic behavior, honey production and spring development) achieved in our selection program since 2010. Our results show an improvement of 0.30% per year for hygienic behavior, 0.63 kg per year for honey production and 164 brood cells per year for spring development. These advances have opened a new era for our breeding program and sharing this superior genetic available to beekeepers will contribute to the sustainability and self-sufficiency of the beekeeping industry in Canada.

Author(s):  
Edison J Ramírez Toro ◽  
Gerson Barreto Mourão ◽  
Rodrigo A Martínez Sarmiento ◽  
Mario F Cerón-Muñoz

Abstract Selection indices are used in genetic improvement programs, with the purpose of selectins simultaneous for several economically important traits. The objective of this study was to construct equations for selection indices in the Blanco-Orejinegro (BON) breed and to determine the index that would generate the greatest genetic progress. The information used included birth weight (BW), body weights adjusted to 120, 240, 480, and 720 days old (W120, W240, W240, 480 and W720, respectively), age at first calving (AFC) and interval between first and second calving (IBC) estimated breeding values. Two Smith and Hazel indices were calculated using variances (I1) and literature (I2), with a part two indices designed using information from experts and breeders (I3 and I4). Las características de mayor peso fueron para a*=W120, a**, a****=W720 y a***=W240 respectivamente. In general, the estimated indices obtained similar reliability and expected genetic differences I1 generated a decrease in direct BW. I2 generated the largest increases in BW and AFC. I3 and I4 generated positive changes in growth and reproductive traits, with I3 generating the greatest genetic gains in the population, especially for W240.


2009 ◽  
Vol 66 (3) ◽  
pp. 317-322 ◽  
Author(s):  
Adeliano Cargnin ◽  
Moacil Alves de Souza ◽  
Vanoli Fronza ◽  
Cláudia Martellet Fogaça

Producers need wheat cultivars adapted to the predominant climate conditions of the end of the rainy period. Having this in mind, EPAMIG (Agriculture and Livestock Research Institute of Minas Gerais) has been developing a wheat genetic improvement program since 1976, and the estimates of the genetic improvement established by the breeding programs could be useful to quantify their efficiency. This study focused on the quantification of the genetic progress achieved by these improvement programs of dryland wheat in the Brazilian-savanna between 1976 and 2005. The efficiency of these programs was evaluated based on grain yield data of VCU (Value for Cultivation and Use) trials conducted at ten locations in the Minas Gerais State, Brazil. The mean estimated genetic progress for mean grain yield between 1976 and 2005 was 37 kg ha-1 year-1. The genetic yield gain in the study period indicates that the improvement programs of dryland wheat in the Brazilian-savanna are effective. Besides the marked contribution of genetic gain, the environmental and technological improvements were also relevant for the yield, accounting for 47.4% of the total progress in the period. The improvement programs of dryland wheat resulted in a genotype renovation rate of 35% over the years.


Insects ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 587 ◽  
Author(s):  
Ségolène Maucourt ◽  
Frédéric Fortin ◽  
Claude Robert ◽  
Pierre Giovenazzo

Genetic selection has led to spectacular advances in animal production in many domestic species. However, it is still little applied to honey bees (Apis mellifera), whose complex genetic and reproductive characteristics are a challenge to model statistically. Advances in informatics now enable creation of a statistical model consistent with honey bee genetics, and, consequently, genetic selection for this species. The aim of this project was to determine the genetic parameters of several traits important for Canadian beekeepers with a view to establishing a breeding program in a northern context. Our results show that the five traits measured (Varroa destructor infestation, spring development, honey production, winter consumption, and hygienic behavior) are heritable. Thus, the rate of V. destructor infestation has a high heritability (h2 = 0.44 ± 0.56), spring development and honey production have a medium heritability (respectively, h2 = 0.30 ± 0.14 and h2 = 0.20 ± 0.13), and winter consumption and hygienic behavior have a low heritability (respectively, h2 = 0.11 ± 0.09 and h2 = 0.18 ± 0.13). Furthermore, the genetic correlations between these traits are all positive or null, except between hygienic behavior and V. destructor infestation level. These genetic parameters will be instrumental to the development of a selection index that will be used to improve the capacity of honey bees to thrive in northern conditions.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 342
Author(s):  
Elena Corredoira ◽  
Rita L. Costa

The increasing degradation of forests, together with a higher demand for wood and fruit, has led to the need for more efficient trees adapted to the current climatic conditions and, thus, to the need for genetic improvement programs [...]


2019 ◽  
Vol 7 (2) ◽  
pp. 141-150 ◽  
Author(s):  
Qamar U. Zaman ◽  
Chao Li ◽  
Hongtao Cheng ◽  
Qiong Hu

2021 ◽  
Vol 58 (2) ◽  
pp. 279-286
Author(s):  
Sandhani Saikia ◽  
Pratap Jyoti Handique ◽  
Mahendra K Modi

Genetic diversity is the source of novel allelic combinations that can be efficiently utilized in any crop improvement program. To facilitate future crop improvement programs in rice, a study was designed to identify the underlying genetic variations in the Sali rice germplasms of Assam using SSR markers. The 129 SSR markers that were used in the study amplified a total of 765 fragments with an average of 5.93 alleles per locus. The Shannon's Information Index was found to be in the range from 0.533 to 1.786. The Polymorphism Information Content (PIC) fell into the range from 0.304 to 0.691 with a mean value of 0.55. The overall FST value was found to be 0.519 that indicated the presence of genetic differentiation amongst the genotypes used in the study. The Sali population was divided into two clusters. The information obtained from the present study will facilitate the genetic improvement of Sali rice cultivars.


Author(s):  
Gabriel Soares Campos ◽  
Fernando Flores Cardoso ◽  
Claudia Cristina Gulias Gomes ◽  
Robert Domingues ◽  
Luciana Correia de Almeida Regitano ◽  
...  

Abstract Genomic prediction has become the new standard for genetic improvement programs, and currently, there is a desire to implement this technology for the evaluation of Angus cattle in Brazil. Thus, the main objective of this study was to assess the feasibility of evaluating young Brazilian Angus (BA) bulls and heifers for 12 routinely recorded traits using single-step genomic BLUP (ssGBLUP) with and without genotypes from American Angus (AA) sires. The second objective was to obtain estimates of effective population size (Ne) and linkage disequilibrium (LD) in the Brazilian Angus population. The dataset contained phenotypic information for up to 277,661 animals belonging to the Promebo® breeding program, pedigree for 362,900, of which 1,386 were genotyped for 50k, 77k, and 150k SNP panels. After imputation and quality control, 61,666 SNP were available for the analyses. In addition, genotypes from 332 American Angus (AA) sires widely used in Brazil were retrieved from the AA Association database to be used for genomic predictions. Bivariate animal models were used to estimate variance components, traditional EBV, and genomic EBV (GEBV). Validation was carried out with the linear regression method (LR) using young-genotyped animals born between 2013 and 2015 without phenotypes in the reduced dataset and with records in the complete dataset. Validation animals were further split into progeny of BA and AA sires to evaluate if their progenies would benefit by including genotypes from AA sires. The Ne was 254 based on pedigree and 197 based on LD, and the average LD (±SD) and distance between adjacent SNPs across all chromosomes was 0.27 (±0.27) and 40743.68 bp, respectively. Prediction accuracies with ssGBLUP outperformed BLUP for all traits, improving accuracies by, on average, 16% for BA young bulls and heifers. The GEBV prediction accuracies ranged from 0.37 (total maternal for weaning weight and tick count) to 0.54 (yearling precocity) across all traits, and dispersion (LR coefficients) fluctuated between 0.92 and 1.06. Inclusion of genotyped sires from the AA improved GEBV accuracies by 2%, on average, compared to using only the BA reference population. Our study indicated that genomic information could help to improve GEBV accuracies and hence genetic progress in the Brazilian Angus population. The inclusion of genotypes from American Angus sires heavily used in Brazil just marginally increased the GEBV accuracies for selection candidates.


2011 ◽  
Vol 11 (spe) ◽  
pp. 16-26 ◽  
Author(s):  
Luiz Antônio dos Santos Dias

The paper analyses the puzzle of the food-energy-environmental security interaction, to which biofuels are part of the solution. It presents and discusses the contribution of genetic improvement to biofuels, with regard to the production of raw materials (oil and ethanol-producing plant species) and designs perspectives, opportunities, risks and challenges, with a special focus on the Brazilian scene. Bioethanol is a consolidated biofuel owing largely to the sugarcane breeding programs. These programs released 111 sugarcane cultivars and were responsible for a 20.8 % gain in productivity of bioethanol (in m³ ha-1) between 2000 and 2009. The program of Brazilian biodiesel production, initiated in 2005, had an annual growth rate of 10 % and the country is already the world's fourth largest producer. However, the contribution of breeding to biodiesel production is still modest, due to the lack of specific improvement programs for oil.


1980 ◽  
Vol 60 (2) ◽  
pp. 253-264 ◽  
Author(s):  
A. J. McALLISTER

In the last decade the dairy cattle population has declined to a level of 1.9 million cows in 1978 with about 56% of these cows bred AI and nearly 20% of the population enrolled in a supervised milk recording program. The decline in cow numbers has been accompanied by an increase in herd size and production per cow. The current breeding program of the dairy industry is a composite of breeding decisions made by AI organizations, breeders who produce young bulls for sampling and all dairymen who choose the sires and dams of their replacement heifers. Estimates of genetic trend from 1958–1975 for milk production in the national milk recorded herd range from 21 to 55 kg per year for the four dairy breeds with Holsteins being 41 kg per year. Both differential use of superior proven sires and improved genetic merit of young bulls entering AI studs contribute to this genetic improvement. Various national production and marketing alternatives were examined. Selection is a major breeding tool in establishing a breeding program to meet national production requirements for milk and milk products once the selection goal is defined. AI and young sire sampling programs will continue to be the primary vehicle for genetic improvement through selection regardless of the selection goal. The current resources of milk-recorded cows bred AI is not being fully utilized to achieve maximum genetic progress possible from young sire sampling indicate that the number of young bulls sampled annually in the Holstein breed could be tripled with the existing milk-recorded and AI bred dairy cow population. Expanded milk recording and AI breeding levels could increase the potential for even further genetic improvement. The potential impact of selection for other traits, crossbreeding and the use of embryo transfer of future breeding programs is highlighted.


Sign in / Sign up

Export Citation Format

Share Document