scholarly journals Application of Tissue Culture in Plant Reproduction

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 342
Author(s):  
Elena Corredoira ◽  
Rita L. Costa

The increasing degradation of forests, together with a higher demand for wood and fruit, has led to the need for more efficient trees adapted to the current climatic conditions and, thus, to the need for genetic improvement programs [...]

2021 ◽  
Vol 58 (2) ◽  
pp. 279-286
Author(s):  
Sandhani Saikia ◽  
Pratap Jyoti Handique ◽  
Mahendra K Modi

Genetic diversity is the source of novel allelic combinations that can be efficiently utilized in any crop improvement program. To facilitate future crop improvement programs in rice, a study was designed to identify the underlying genetic variations in the Sali rice germplasms of Assam using SSR markers. The 129 SSR markers that were used in the study amplified a total of 765 fragments with an average of 5.93 alleles per locus. The Shannon's Information Index was found to be in the range from 0.533 to 1.786. The Polymorphism Information Content (PIC) fell into the range from 0.304 to 0.691 with a mean value of 0.55. The overall FST value was found to be 0.519 that indicated the presence of genetic differentiation amongst the genotypes used in the study. The Sali population was divided into two clusters. The information obtained from the present study will facilitate the genetic improvement of Sali rice cultivars.


2011 ◽  
Vol 11 (spe) ◽  
pp. 16-26 ◽  
Author(s):  
Luiz Antônio dos Santos Dias

The paper analyses the puzzle of the food-energy-environmental security interaction, to which biofuels are part of the solution. It presents and discusses the contribution of genetic improvement to biofuels, with regard to the production of raw materials (oil and ethanol-producing plant species) and designs perspectives, opportunities, risks and challenges, with a special focus on the Brazilian scene. Bioethanol is a consolidated biofuel owing largely to the sugarcane breeding programs. These programs released 111 sugarcane cultivars and were responsible for a 20.8 % gain in productivity of bioethanol (in m³ ha-1) between 2000 and 2009. The program of Brazilian biodiesel production, initiated in 2005, had an annual growth rate of 10 % and the country is already the world's fourth largest producer. However, the contribution of breeding to biodiesel production is still modest, due to the lack of specific improvement programs for oil.


Author(s):  
Bo Xu ◽  
Rina Wu ◽  
Fang Tang ◽  
Cuiping Gao ◽  
Xia Gao ◽  
...  

Background: Alfalfa (Medicago Sativa), a perennial cross-pollinated plant, is one of the most important forage crops in the world with commercial value and ecological significance. However, due to the complexity of its genome, varietal improvement is difficult. Therefore, generating genetically homozygous materials have greater significance for breeding. In the current study, we aimed to identify the best tissue culture conditions to obtain haploid plants and double haploid plants.Methods: In this study, the haploid plants of alfalfa were obtained by combining tissue culture regeneration system with Flow cytometry. Different concentrations of colchicine were applied to the haploid plants using solid and liquid cultivation methods to determine the optimum conditions to obtain double haploid plants of Medicago Sativa L. cv. ‘XinJiangDaYe’. Result: Among the two colchicine cultivation methods tested, the doubling rate of regenerated plants obtained by liquid cultivation method was higher and the leaves developed under this system have the best doubling effect among the three explants tested. Optimal doubling conditions for alfalfa haploid (Medicago Sativa L. cv. ‘XinJiangDaYe’) were identified. The double haploid plant material generated from the current study could serve as a genetic resource for developing the hybrid combinations and for analyzing genetic linkage in alfalfa improvement programs.


2003 ◽  
Vol 2003 ◽  
pp. 225-225
Author(s):  
B. Gjerde ◽  
B. Villanueva

The high yields obtained in agriculture rely heavily on the use of domesticated and genetically improved breeds and varieties. Until quite recently this has not been the case for most farmed aquaculture species that, in the genetic sense, are still much closer to the wild state than are the major terrestrial animals and food crops. Less than 10 % of the total world aquaculture production is based on improved strains. Due to a growing human population and a decline in production from capture fisheries, there is therefore a great disparity between the need for increased aquaculture production and the genetic quality of the strains available to meet that need. Moreover, full benefits of investments in management improvements (feed and feeding practices, control of diseases, etc.) can only be obtained through the use of genetically improved animals.


1988 ◽  
Vol 111 (2) ◽  
pp. 295-301 ◽  
Author(s):  
A. M. Abd El Moneim ◽  
P. S. Cocks ◽  
Y. Swedan

SummaryWith the current high prices for livestock, forage legumes are increasingly attractive to farmers in west Asia. There has been very little genetic improvement of the main species, of which three vetches, Vicia saliva (common vetch), V. villosa subsp. dasycarpa (woollypod vetch), and V. narbonensis (Narbon vetch), show promise. As a first step in genetic improvement 23 genotypes of common vetch and one each of woollypod vetch and Narbon vetch were grown at four sites in Syria and one in Lebanon over three seasons. Since local climatic conditions were considered to be of considerable importance, each site in each year was treated as a separate environment, to give 15 environments in all. genotype × environment (G × E) interactions were analysed using linear regression.There was considerable variation in herbage and seed yields within both genotypes and environments, and G × E interactions were highly significant. In the case of herbage yield good environments could be defined as those receiving high rainfall and low incidence of frost. Several genotypes appeared to possess wide adaptation, in terms of both yield and stability. Climate, except for late spring rains, had little effect on seed yield, nor were any of the genotypes widely adapted. However, in the broad sense heritability was much higher for seed than for herbage yield.There is a need to define good and bad environments for seed yield. Based on observations during the study it is likely that good environments for Narbon vetch are those where broomrape (Orobanche crenata) is absent, while root-knot nematode (Meloidogyne artiella) may affect seed yield of common vetch. In view of its high seed yield the possible role of Narbon vetch as a grain legume is briefly discussed.


2012 ◽  
Vol 63 (2) ◽  
pp. 107 ◽  
Author(s):  
Julia M. Lee ◽  
Cory Matthew ◽  
Errol R. Thom ◽  
David F. Chapman

Genetic improvement programs for livestock and pasture plants have been central to the development of the New Zealand (NZ) pastoral industry. Although genetic improvement of livestock is easily shown to improve animal production on-farm, the link between genetic improvement of pasture plants and animal production is less direct. For several reasons, gains in farm output arising from improved plant performance are more difficult to confirm than those arising from livestock improvement, which has led to some debate in the livestock industries about which plant traits to prioritise in future breeding programs to deliver the greatest benefit. This review investigates this situation, with the aim of understanding how genetic improvement of perennial ryegrass (Lolium perenne L.), the predominant pasture grass, may more directly contribute towards increased productivity in the NZ dairy industry. The review focuses on the dairy industry, since it is the largest contributor to the total value of NZ agricultural exports. Also, because rates of pasture renewal are greater in the dairy industry compared with the sheep and beef industries, genetic gain in pasture plants is likely to have the greatest impact if the correct plant traits are targeted. The review highlights that many aspects of ryegrass growth and ecology have been manipulated through breeding, with evidence to show that plant performance has been altered as a result. However, it is not clear to what extent these gains have contributed to the economic development of the NZ dairy industry. There are opportunities for breeders and scientists to work together more closely in defining economic traits that positively influence pasture performance and to translate this information to objectives for breeding programs, systematically linking information on the measured traits of ryegrass cultivars to economic values for those traits to assist farmer decision-making regarding the most appropriate cultivars to use in their farm system, and better defining genotype × environment interactions in key productivity traits of modern ryegrass cultivars. Changes in priorities for investment of public- and industry-good funds in forage improvement research and development will be needed if these opportunities are to be captured.


2001 ◽  
Vol 31 (4) ◽  
pp. 588-595 ◽  
Author(s):  
J SF Barker

In the context of domestic animal diversity, the term "breed" is conventionally used for all recognized populations. There are in total about 5000 breeds, a small proportion of which are in planned programs for genetic improvement, while about 30% are at risk of extinction. The primary focus is on the conservation of breeds, including management for better utilization (breeding programs) and conserving those at risk, with the aim of minimizing the loss of among breed diversity. The majority of the world's breeds are in the developing countries, with production environments that are low to medium input and high stress, and each may be expected to have adapted to its specific environment. Empirical evidence strongly supports the expectation that the genetic basis of population differentiation for fitness traits will be nonadditive, with different adaptive gene complexes evolved in each breed. Genetic improvement programs therefore should start with an adapted population, with selection then for production traits. As not all breeds can be conserved, priorities must be determined. Suggested criteria (breed divergence, risk of breed extinction, breed "merit," and within-breed variation) are presented and evaluated. Similar approaches may be appropriate for the conservation of genetic diversity of forest trees.


2021 ◽  
Author(s):  
Zeleke Tesema ◽  
Damitie Kebede

Analysis and evaluation of the previous genetic improvement attempts and their fruition are paramount to make the right decision in the future. Hence, this paper reviews the status of goat genetic improvement programs through quantitative evidence and elucidates how it can be implemented in the future through an intensive literature review. Goat genetic improvement through crossbreeding was initiated early in 1975. However, most crossbreeding programs have lacked analysis of the existing resources and infrastructure and also lack long-term strategies. As a result, crossbreeding program was discontinued without significant contribution due to incompatibility of the exotic genotype with low-input production systems. On the other hand, the moderate to high genetic variation within a population open the window for within-breed selection. Accordingly, a well-designed within-breed selection program was initiated late in 2013 for specified breeds. Currently, governmental and non-governmental institutions plan to scale up community-based within-breed selection program. Besides, the efficiency of assisted reproductive technologies in goat genetic improvement was evaluated by ICARDA and reported a moderate achievement. However, the application of molecular technologies in Ethiopia is only limited to diversity studies. Nevertheless, there is an opportunity to use molecular technologies to enhance the genetic progress of a genetic improvement program. In conclusion, the expected benefits from crossbreeding program were not obtained and will not be obtained under the existing low input-production system. Therefore, a within-breed selection program would be an ideal option for the existing low-input production system if integrated with assisted reproductive and molecular technologies.


Sign in / Sign up

Export Citation Format

Share Document