scholarly journals Abscisic Acid Priming Creates Alkaline Tolerance in Alfalfa Seedlings (Medicago sativa L.)

Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 608
Author(s):  
Tian-Jiao Wei ◽  
Ming-Ming Wang ◽  
Yang-Yang Jin ◽  
Guo-Hui Zhang ◽  
Miao Liu ◽  
...  

Soil alkalization triggers ion toxicity and osmotic and alkaline (high pH) stresses in plants, damaging their growth and productivity. Therefore, we investigated whether priming with abscisic acid (ABA) increases the tolerance of alfalfa seedlings to alkaline stress, and then examined the underlying molecular mechanisms. Alfalfa seedlings were pretreated with ABA (10 μM) for 16 h and then subjected to alkaline stress using a 15 mM Na2CO3 solution (pH 10.87). Compared with the control, ABA pretreatment significantly alleviated leaf damage and improved the fresh weight, water content, and survival rate of alfalfa seedlings under alkaline conditions. Abscisic acid pretreatment reduced accumulation of reactive oxygen species (ROS), increased activities of the antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD), maintained higher ratios of K+/Na+, Ca2+/Na+, and Mg2+/Na+, and increased accumulation of proline. In addition, ABA upregulated the expression of genes involved in proline biosynthesis (P5CS) and the sequestration of Na+ in vacuoles (NHX1 and AVP) under alkaline conditions. Abscisic acid priming increased tolerance to alkaline stress by maintaining homeostasis of ROS and metal ions and upregulating osmoprotection and the expression of stress tolerance-related genes.

2020 ◽  
Author(s):  
Maria Paula Campestre ◽  
Nazareno Luis Castagno ◽  
Cristian Javier Antonelli ◽  
Vanina Giselle Maguire ◽  
Francisco Jose Escaray ◽  
...  

AbstractThis study was designed to elucidate the physiological responses of three Lotus forage accessions to alkaline stress and the influence of the inoculation of a Pantoea eucalypti endophyte strain on its mitigation. One-month-old diploid accessions of Lotus corniculatus (Lc) and Lotus tenuis (Lt), and the interspecific hybrid LtxLc obtained from these parental accessions, were exposed to alkaline stress (pH 8.2) by the addition of NaHCO3 10 mM to the nutrient solution for 2 weeks. The results indicated that Lt and the LtxLc hybrid are alkaline-tolerant compared to Lc, based on the observation that their dry mass is not reduced under stress, and symptoms of chlorosis do not appear on leaf blades, in contrast to observations of the Lc accession subjected to identical growth and stress conditions. In Lc and LtxLc accessions, the Fe2+ concentration decreased in the aerial part under stress and increased in the roots. Interveinal chlorosis observed in the youngest leaves of Lc during alkaline treatment was accompanied with a higher reduction of Fe2+ levels in shoots and a higher increment of Fe2+ in roots, compared to the other accession. Plant inoculation also tended to acidify the medium under alkalinity, contributing to Fe accumulation in the roots. Moreover, the inoculation caused a considerable increase in Fe2+ content in shoots in all three Lotus forage species under alkaline treatment.Fv/Fm and PIABS were only reduced in Lc under alkaline treatment. Inoculation reverted this effect and improved the ABS/RC and DIo/RC ratios in all three accessions. In addition, under alkaline conditions, Lc dissipated more energy than control plants. Expression of the metal-transporting gene NRAMP1 increased in the inoculated Lc accession under stress, while remaining unmodified in Lt and LtxLc hybrid.Altogether, the results obtained make clear the importance of inoculation with P. eucalypti, which contributed significantly to the mitigation of alkaline stress. Thus, all the results provide useful information for improving alkaline tolerance traits in Lotus forage species and their interspecific hybrids.


2018 ◽  
Vol 84 (10) ◽  
Author(s):  
Ning Xu ◽  
Yingying Zheng ◽  
Xiaochen Wang ◽  
Terry A. Krulwich ◽  
Yanhe Ma ◽  
...  

ABSTRACTCorynebacterium glutamicumis generally regarded as a moderately salt- and alkali-tolerant industrial organism. However, relatively little is known about the molecular mechanisms underlying these specific adaptations. Here, we found that the Mrp1 antiporter played crucial roles in conferring both environmental Na+resistance and alkali tolerance whereas the Mrp2 antiporter was necessary in coping with high-KCl stress at alkaline pH. Furthermore, the Δmrp1Δmrp2double mutant showed the most-severe growth retardation and failed to grow under high-salt or alkaline conditions. Consistent with growth properties, the Na+/H+antiporters ofC. glutamicumwere differentially expressed in response to specific salt or alkaline stress, and an alkaline stimulus particularly induced transcript levels of the Mrp-type antiporters. When the major Mrp1 antiporter was overwhelmed,C. glutamicummight employ alternative coordinate strategies to regulate antiport activities. Site-directed mutagenesis demonstrated that several conserved residues were required for optimal Na+resistance, such as Mrp1A K299, Mrp1C I76, Mrp1A H230, and Mrp1D E136. Moreover, the chromosomal replacement of lysine 299 in the Mrp1A subunit resulted in a higher intracellular Na+level and a more alkaline intracellular pH value, thereby causing a remarkable growth attenuation. Homology modeling of the Mrp1 subcomplex suggested two possible ion translocation pathways, and lysine 299 might exert its effect by affecting the stability and flexibility of the cytoplasm-facing channel in the Mrp1A subunit. Overall, these findings will provide new clues to the understanding of salt-alkali adaptation duringC. glutamicumstress acclimatization.IMPORTANCEThe capacity to adapt to harsh environments is crucial for bacterial survival and product yields, including industrially usefulCorynebacterium glutamicum. AlthoughC. glutamicumexhibits a marked resistance to salt-alkaline stress, the possible mechanism for these adaptations is still unclear. Here, we present the physiological functions and expression patterns ofC. glutamicumputative Na+/H+antiporters and conserved residues of Mrp1 subunits, which respond to different salt and alkaline stresses. We found that the Mrp-type antiporters, particularly the Mrp1 antiporter, played a predominant role in maintaining intracellular nontoxic Na+levels and alkaline pH homeostasis. Loss of the major Mrp1 antiporter had a profound effect on gene expression of other antiporters under salt or alkaline conditions. The lysine 299 residue may play its essential roles in conferring salt and alkaline tolerance by affecting the ion translocation channel of the Mrp1A subunit. These findings will contribute to a better understanding of Na+/H+antiporters in sodium antiport and pH regulation.


2021 ◽  
Author(s):  
Tian-Jiao Wei ◽  
Guang Li ◽  
Ming-Ming Wang ◽  
Yang-Yang Jin ◽  
Guo-Hui Zhang ◽  
...  

Abstract Key message Candidate pathways for alkaline tolerance in alfalfa seedlings were identified; these included those for homeostasis of ions and redox status, biosynthesis of phenylpropanoids, flavonoids, and amino acids, and MAPK signaling.Abstract Soil alkalization severely limits plant growth and development; however, the mechanisms of alkaline response remain largely unknown. In this study, we performed physiological and transcriptomic analyses using two alfalfa cultivars (Medicago sativa L.) with different sensitivities to alkaline conditions. The chlorophyll content and shoot fresh weight drastically declined in the alkaline-sensitive cultivar Algonquin (AG) following alkaline treatment (0-25 mM Na2CO3 solution), while the alkaline-tolerant cultivar Gongnong NO.1 (GN) maintained relatively stable growth and chlorophyll content. Physiological analysis revealed that compared with AG, GN had higher contents of Ca2+ and Mg2+; the ratios of Ca2+ and Mg2+ to Na+, proline and soluble sugar, and enzyme activities of peroxidase (POD) and catalase (CAT) decreased under the alkaline conditions. Further, transcriptomic analysis identified three categories of alkaline-responsive differentially expressed genes (DEGs) between the two cultivars: 48 genes commonly induced in both the cultivars (CAR), 574 genes from the tolerant cultivar (TAR), and 493 genes from the sensitive cultivar (SAR). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that CAR genes were mostly involved in phenylpropanoid biosynthesis, lipid metabolism, and DNA replication and repair; TAR genes were significantly enriched in metabolic pathways, biosynthesis of secondary metabolites, MAPK signaling pathway, and flavonoid and amino acid biosynthesis; the SAR genes were specifically enriched in vitamin B6 metabolism. Taken together, the results identified candidate pathways associated with genetic variation in response to alkaline stress, providing novel insights into the mechanisms underlying alkaline tolerance in alfalfa.


2020 ◽  
Vol 40 (11) ◽  
pp. 1509-1519 ◽  
Author(s):  
Yuxing Li ◽  
Chenlu Liu ◽  
Xun Sun ◽  
Boyang Liu ◽  
Xiuzhi Zhang ◽  
...  

Abstract Soil alkalization affects apple production in northwest China. Autophagy is a highly conserved degradative protein pathway in eukaryotes. Autophagy in plants can be activated by various abiotic factors. We previously identified the positive role of the autophagy-related gene MdATG18a in drought, nitrogen deficiency and resistance to Diplocarpon mali infection in apple. However, it is still unclear whether ATG18a is related to alkaline stress. In this study, we used hydroponic culture to simulate alkaline stress and found that the overexpression of MdATG18a significantly improved the tolerance of apple to alkaline stress. The overexpression of MdATG18a increased biomass, photosynthetic rate and antioxidant capacity of transgenic plants compared with wild-type plants under alkaline stress. The overexpression of MdATG18a promoted γ-aminobutyric acid (GABA) shunt via an increase in glutamate (GABA precursor) and GABA contents and upregulation of GABA shunt-related genes. In addition, the overexpression of MdATG18a significantly upregulated the expression of other core ATG genes and increased the formation of autophagosomes under alkaline stress. In conclusion, these results suggest that the overexpression of MdATG18a in apple enhances alkaline tolerance and the GABA shunt, which may be owing to the increase in autophagic activity.


2021 ◽  
Vol 22 (11) ◽  
pp. 6080
Author(s):  
Víctor Quesada

In this special issue entitled, “Advances in the Molecular Mechanisms of Abscisic Acid and Gibberellins Functions in Plants”, eight articles are collected, with five reviews and three original research papers, which broadly cover different topics on the abscisic acid (ABA) field and, to a lesser extent, on gibberellins (GAs) research [...]


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1328
Author(s):  
Noushin Jahan ◽  
Yang Lv ◽  
Mengqiu Song ◽  
Yu Zhang ◽  
Liangguang Shang ◽  
...  

Salinity is a major abiotic stressor that leads to productivity losses in rice (Oryza sativa L.). In this study, transcriptome profiling and heterosis-related genes were analyzed by ribonucleic acid sequencing (RNA-Seq) in seedlings of a mega rice hybrid, Liang-You-Pei-Jiu (LYP9), and its two parents 93–11 and Pei-ai64s (PA64s), under control and two different salinity levels, where we found 8292, 8037, and 631 salt-induced differentially expressed genes (DEGs), respectively. Heterosis-related DEGs were obtained higher after 14 days of salt treatment than after 7 days. There were 631 and 4237 salt-induced DEGs related to heterosis under 7-day and 14-day salt stresses, respectively. Gene functional classification showed the expression of genes involved in photosynthesis activity after 7-day stress treatment, and in metabolic and catabolic activity after 14 days. In addition, we correlated the concurrence of an expression of DEGs for the bHLH transcription factor and a shoot length/salinity-related quantitative trait locus qSL7 that we fine-mapped previously, providing a confirmed case of heterosis-related genes. This experiment reveals the transcriptomic divergence of the rice F1 hybrid and its parental lines under control and salt stress state, and enlightens about the significant molecular mechanisms developed over time in response to salt stress.


2021 ◽  
Vol 22 (12) ◽  
pp. 6557
Author(s):  
Li-Ying Ren ◽  
Heng Zhao ◽  
Xiao-Ling Liu ◽  
Tong-Kai Zong ◽  
Min Qiao ◽  
...  

Gastrodia elata is a well-known medicinal and heterotrophic orchid. Its germination, limited by the impermeability of seed coat lignin and inhibition by abscisic acid (ABA), is triggered by symbiosis with fungi such as Mycena spp. However, the molecular mechanisms of lignin degradation by Mycena and ABA biosynthesis and signaling in G. elata remain unclear. In order to gain insights into these two processes, this study analyzed the transcriptomes of these organisms during their dynamic symbiosis. Among the 25 lignin-modifying enzyme genes in Mycena, two ligninolytic class II peroxidases and two laccases were significantly upregulated, most likely enabling Mycena hyphae to break through the lignin seed coats of G. elata. Genes related to reduced virulence and loss of pathogenicity in Mycena accounted for more than half of annotated genes, presumably contributing to symbiosis. After coculture, upregulated genes outnumbered downregulated genes in G. elata seeds, suggesting slightly increased biological activity, while Mycena hyphae had fewer upregulated than downregulated genes, indicating decreased biological activity. ABA biosynthesis in G. elata was reduced by the downregulated expression of 9-cis-epoxycarotenoid dioxygenase (NCED-2), and ABA signaling was blocked by the downregulated expression of a receptor protein (PYL12-like). This is the first report to describe the role of NCED-2 and PYL12-like in breaking G. elata seed dormancy by reducing the synthesis and blocking the signaling of the germination inhibitor ABA. This study provides a theoretical basis for screening germination fungi to identify effective symbionts and for reducing ABA inhibition of G. elata seed germination.


2021 ◽  
pp. 030098582110063
Author(s):  
Francesco C. Origgi ◽  
Patricia Otten ◽  
Petra Lohmann ◽  
Ursula Sattler ◽  
Thomas Wahli ◽  
...  

A comparative study was carried out on common and agile frogs ( Rana temporaria and R. dalmatina) naturally infected with ranid herpesvirus 3 (RaHV3) and common toads ( Bufo bufo) naturally infected with bufonid herpesvirus 1 (BfHV1) to investigate common pathogenetic pathways and molecular mechanisms based on macroscopic, microscopic, and ultrastructural pathology as well as evaluation of gene expression. Careful examination of the tissue changes, supported by in situ hybridization, at different stages of development in 6 frogs and 14 toads revealed that the skin lesions are likely transient, and part of a tissue cycle necessary for viral replication in the infected hosts. Transcriptomic analysis, carried out on 2 naturally infected and 2 naïve common frogs ( Rana temporaria) and 2 naturally infected and 2 naïve common toads ( Bufo bufo), revealed altered expression of genes involved in signaling and cell remodeling in diseased animals. Finally, virus transcriptomics revealed that both RaHV3 and BfHV1 had relatively high expression of a putative immunomodulating gene predicted to encode a decoy receptor for tumor necrosis factor in the skin of the infected hosts. Thus, the comparable lesions in infected frogs and toads appear to reflect a concerted epidermal and viral cycle, with presumptive involvement of signaling and gene remodeling host and immunomodulatory viral genes.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Laura Piovani ◽  
Anna Czarkwiani ◽  
Cinzia Ferrario ◽  
Michela Sugni ◽  
Paola Oliveri

Abstract Background Regeneration is the ability to re-grow body parts or tissues after trauma, and it is widespread across metazoans. Cells involved in regeneration can arise from a pool of undifferentiated proliferative cells or be recruited from pre-existing differentiated tissues. Both mechanisms have been described in different phyla; however, the cellular and molecular mechanisms employed by different animals to restore lost tissues as well as the source of cells involved in regeneration remain largely unknown. Echinoderms are a clade of deuterostome invertebrates that show striking larval and adult regenerative abilities in all extant classes. Here, we use the brittle star Amphiura filiformis to investigate the origin and differentiation of cells involved in skeletal regeneration using a combination of microscopy techniques and molecular markers. Results Our ultrastructural analyses at different regenerative stages identify a population of morphologically undifferentiated cells which appear in close contact with the proliferating epithelium of the regenerating aboral coelomic cavity. These cells express skeletogenic marker genes, such as the transcription factor alx1 and the differentiation genes c-lectin and msp130L, and display a gradient of morphological differentiation from the aboral coelomic cavity towards the epidermis. Cells closer to the epidermis, which are in contact with developing spicules, have the morphology of mature skeletal cells (sclerocytes), and express several skeletogenic transcription factors and differentiation genes. Moreover, as regeneration progresses, sclerocytes show a different combinatorial expression of genes in various skeletal elements. Conclusions We hypothesize that sclerocyte precursors originate from the epithelium of the proliferating aboral coelomic cavity. As these cells migrate towards the epidermis, they differentiate and start secreting spicules. Moreover, our study shows that molecular and cellular processes involved in skeletal regeneration resemble those used during skeletal development, hinting at a possible conservation of developmental programmes during adult regeneration. Finally, we highlight that many genes involved in echinoderm skeletogenesis also play a role in vertebrate skeleton formation, suggesting a possible common origin of the deuterostome endoskeleton pathway.


Sign in / Sign up

Export Citation Format

Share Document