scholarly journals Effect of Calcium Cyanamide on Soil Fungal Community in Successive Tea-Cuttings Nursery

Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 716
Author(s):  
Qinli Qiu ◽  
Dongmei Fan ◽  
Yinmao Wang ◽  
Danyi Huang ◽  
Yu Wang ◽  
...  

The effects of calcium cyanamide on the soil fungal communities in successive tea-cuttings nursery soils were investigated based on Illumina high-throughput sequencing. The field experiment was carried out with three treatments, including control (CK), flooding (F) and calcium cyanamide (CC). The treatment with calcium cyanamide increased pH (~1 unit) and reduced the accumulation of phenols (~50%), available phosphorus (~28%) and exchangeable Al (~90%) significantly, and improved soil quality. The predominant phylum in all treatments was Ascomycota. FUNGuild revealed that the dominant trophic mode was saprotrophy in tea-cuttings nursery soil. Plant pathogens had a low abundance in the calcium cyanamide treatment. Alpha diversity analysis showed lower richness in the calcium cyanamide than the other treatments. Network analysis showed a poorly connected but highly modularized network in the calcium cyanamide treatment, with the crucial OTUs functions related to anti-pathogenicity. The results showed that calcium cyanamide should be recommended for improving long-term tea nurseries by increasing the survival rate of tea seedlings due to increasing soil pH value, reducing aluminum toxicity, decreasing the accumulation of polyphenols, diminishing pathogenic fungi and making the taxa related to anti-pathogenicity occupy a more important niche.

2020 ◽  
Vol 57 (12) ◽  
pp. 1832-1843 ◽  
Author(s):  
Yongfeng Deng ◽  
Jun Wu ◽  
Yunzhi Tan ◽  
Yujun Cui ◽  
Chao-sheng Tang ◽  
...  

Municipal mud consists of organic matter naturally deposited in a microbial-rich environment, and its common pre-treatment in the laboratory is normally different from that in situ. In this study, an improved pre-loading method and the common pre-treatment method (by air or oven drying) were first applied to investigate the effect of microorganisms within organic matter on performance of the solidified soils. Results reveal that (i) Atterberg limits in the pre-loading method were higher than those in the drying method; (ii) the time-dependent strength became stable for the solidified soils pre-treated by the drying method, while strength decreased for the soils pre-treated by the pre-loading method; (iii) pH value of solidified soils by the pre-loading method decreased more significantly. After excluding the possible porosity influence on solidified soils, the effects of microorganisms within organic matter were investigated by microbial identification tests, including fluorescence detection and high-throughput sequencing. The pre-treatment procedure changed the vitality and diversity of microorganisms, leading to a rebalance between acid erosion and cement hydration during long-term curing. At the end, the long-term strength of the solidified municipal mud by the traditional pre-treatment method (by air or oven drying) could be overevaluated.


Soil Research ◽  
1993 ◽  
Vol 31 (2) ◽  
pp. 165
Author(s):  
G Mew ◽  
R Lee

Shoulder, mid-, and foot-slope profiles from two representative soil toposequences developed on siliceous mudstone, on steep land under cut-over forest and scrub, were described morphologically and analysed for selected chemical, physical and mineralogical properties, principally to determine the constraints to long-term sustainable pastoral production. The soils are low in both available phosphorus and sulfur, but the chief constraint appears to be high subsoil acidity giving rise to toxic levels of exchangeable Al. This is presumed to restrict root growth and N-fixing ability of the mixed grass/clover pastures, thereby severely limiting production through frequent and prolonged summer droughts. According to the revised N.Z. Soil Classification System, five of the six profiles are Brown Soils, and one shoulder profile is a Recent Soil. Close associations with Pallic Soils were noted in down-profile changes in Ca/Mg ratios and relatively high exchangeable Na levels. Following Soil Taxonomy, five of the profiles were classified as Dystrochrepts and one as a Fragiochrept. These classifications indicate site stability for soil formation under the indigenous vegetation cover. Adjoining steep sites under pasture are prone to erosion, however. Soil analytical results indicate that extensive erosion is not necessarily a prerequisite for problems with pastoral production in the region.


2021 ◽  
Vol 11 ◽  
Author(s):  
Fangfang Cai ◽  
Peiyu Luo ◽  
Jinfeng Yang ◽  
Muhammad Irfan ◽  
Shiyu Zhang ◽  
...  

The objective of this study was to find out changes in ammonia oxidation microorganisms with respect to fertilizer as investigated by real-time polymerase chain reaction and high-throughput sequencing. The treatments included control (CK); chemical fertilizer nitrogen low (N) and high (N2); nitrogen and phosphorus (NP); nitrogen phosphorus and potassium (NPK) and organic manure fertilizer (M); MN; MN2; MNPK. The results showed that long-term fertilization influenced soil fertility and affected the abundance and community of ammonia-oxidizing microorganisms by changing the physical and chemical properties of the soil. The abundance and community structure of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) was influenced by soil organic carbon, total nitrogen, total soil phosphorus, available phosphorus, available potassium, and soil nitrate. Soil environmental factors affected the nitrification potential by affecting the structure of ammonia-oxidizing microorganisms; specific and rare AOA and AOB rather than the whole AOA or AOB community played dominant role in nitrification.


2014 ◽  
Vol 60 (No. 4) ◽  
pp. 146-150 ◽  
Author(s):  
I. Jaskulska ◽  
D. Jaskulski ◽  
M. Kobierski

For 10 years (1999&ndash;2008) there was investigated the effect of liming on soil pH<sub>KCl</sub> and on organic carbon, available forms of macroelements and DTPA-extracted forms of some metals in 6 different fertilization objects in a long-term experiment set up in 1948: without fertilization (0), straw + NPK (STR NPK), NPK, farmyard manure (FYM), FYM NPK, FYM NPKMgCa. As a result of the application of 12.0 t/ha of lime (4.3 t Ca/ha), an increase was found not only in soil pH value but also in organic carbon, plant available phosphorus, zinc and copper contents and a decrease in manganese content. Despite significant changes in the soil properties, they still varied across the long-term fertilization objects.


2021 ◽  
Author(s):  
Wan Tao ◽  
Rui Xu ◽  
Hanzhi Lin ◽  
Duanyi Huang ◽  
Pingzhou Su ◽  
...  

Abstract The extensive application of perfluoroalkyl and polyfluoroalkyl substances (PFASs) causes their frequent detection in various environments. Nevertheless, the effects of PFASs exposure on environmental microorganisms still remain unknown. In current work, two typical PFASs, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), are selected to investigate their long-term effects on soil microbes. Microbial community structure and diversity were investigated by high-throughput sequencing and multiple statistical methods. Under 90-days of exposure, PFAS treatments increased the alpha-diversity of soil microbial communities with PFOS treatment, followed by PFOA treatment. The long-term exposure of PFASs substantially changed the compositions of soil microbial communities. The most abundant phylum Proteobacteria decreased from 82.9% (without amended PFASs) to 62.1% (with PFOA treatment) and 77.8% (with PFOS treatment). As a comparison, the relative abundance of Bacteroidetes, Chloroflexi, Acidobacteria, and Ignavibacteriae increased in the PFOA or PFOS groups. Comparative co-occurrence networks were constructed to investigate the biotic interactions in the two treatments. It was found that most taxonomy nodes in the PFOA and PFOS networks were associated with the genus Hydrogenophaga and Pseudoxanthomonas, respectively. The LEfSe analysis identified a set of core taxonomies (e.g., Azospirillum, Methyloversatilis, Ancylobacter, Hydrogenophaga, and Methylomonas) in the soil microbial communities and suggested their different preferences to PFAS exposures. Functional gene prediction suggested that the microbial metabolism processes, such as nucleotide transport and metabolism, cell motility, carbohydrate transport and metabolism, energy production and conversion, and secondary metabolites biosynthesis transport and catabolism, might be significantly inhibited under PFAS exposure, which may further affect soil ecological services.


2016 ◽  
Vol 90 (15) ◽  
pp. 6846-6863 ◽  
Author(s):  
Shin-Yi Lee Marzano ◽  
Berlin D. Nelson ◽  
Olutoyosi Ajayi-Oyetunde ◽  
Carl A. Bradley ◽  
Teresa J. Hughes ◽  
...  

ABSTRACTMycoviruses can have a marked effect on natural fungal communities and influence plant health and productivity. However, a comprehensive picture of mycoviral diversity is still lacking. To characterize the viromes of five widely dispersed plant-pathogenic fungi,Colletotrichum truncatum,Macrophomina phaseolina,Diaporthe longicolla,Rhizoctonia solani, andSclerotinia sclerotiorum, a high-throughput sequencing-based metatranscriptomic approach was used to detect viral sequences. Total RNA and double-stranded RNA (dsRNA) from mycelia and RNA from samples enriched for virus particles were sequenced. Sequence data were assembledde novo, and contigs with predicted amino acid sequence similarities to viruses in the nonredundant protein database were selected. The analysis identified 72 partial or complete genome segments representing 66 previously undescribed mycoviruses. Using primers specific for each viral contig, at least one fungal isolate was identified that contained each virus. The novel mycoviruses showed affinity with 15 distinct lineages:Barnaviridae,Benyviridae,Chrysoviridae,Endornaviridae,Fusariviridae,Hypoviridae,Mononegavirales,Narnaviridae,Ophioviridae,Ourmiavirus,Partitiviridae,Tombusviridae,Totiviridae,Tymoviridae, andVirgaviridae. More than half of the viral sequences were predicted to be members of theMitovirusgenus in the familyNarnaviridae, which replicate within mitochondria. Five viral sequences showed strong affinity with three families (Benyviridae,Ophioviridae, andVirgaviridae) that previously contained no mycovirus species. The genomic information provides insight into the diversity and taxonomy of mycoviruses and coevolution of mycoviruses and their fungal hosts.IMPORTANCEPlant-pathogenic fungi reduce crop yields, which affects food security worldwide. Plant host resistance is considered a sustainable disease management option but may often be incomplete or lacking for some crops to certain fungal pathogens or strains. In addition, the rising issues of fungicide resistance demand alternative strategies to reduce the negative impacts of fungal pathogens. Those fungus-infecting viruses (mycoviruses) that attenuate fungal virulence may be welcome additions for mitigation of plant diseases. By high-throughput sequencing of the RNAs from 275 isolates of five fungal plant pathogens, 66 previously undescribed mycoviruses were identified. In addition to identifying new potential biological control agents, these results expand the grand view of the diversity of mycoviruses and provide possible insights into the importance of intracellular and extracellular transmission in fungus-virus coevolution.


1977 ◽  
Vol 16 (01) ◽  
pp. 30-35 ◽  
Author(s):  
N. Agha ◽  
R. B. R. Persson

SummaryGelchromatography column scanning has been used to study the fractions of 99mTc-pertechnetate, 99mTcchelate and reduced hydrolyzed 99mTc in preparations of 99mTc-EDTA(Sn) and 99mTc-DTPA(Sn). The labelling yield of 99mTc-EDTA(Sn) chelate was as high as 90—95% when 100 μmol EDTA · H4 and 0.5 (Amol SnCl2 was incubated with 10 ml 99mTceluate for 30—60 min at room temperature. The study of the influence of the pH-value on the fraction of 99mTc-EDTA shows that pH 2.8—2.9 gave the best labelling yield. In a comparative study of the labelling kinetics of 99mTc-EDTA(Sn) and 99mTc- DTPA(Sn) at different temperatures (7, 22 and 37°C), no significant influence on the reduction step was found. The rate constant for complex formation, however, increased more rapidly with increased temperature for 99mTc-DTPA(Sn). At room temperature only a few minutes was required to achieve a high labelling yield with 99mTc-DTPA(Sn) whereas about 60 min was required for 99mTc-EDTA(Sn). Comparative biokinetic studies in rabbits showed that the maximum activity in kidneys is achieved after 12 min with 99mTc-EDTA(Sn) but already after 6 min with 99mTc-DTPA(Sn). The long-term disappearance of 99mTc-DTPA(Sn) from the kidneys is about five times faster than that for 99mTc-EDTA(Sn).


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 355
Author(s):  
Runbo Luo ◽  
Yangdong Zhang ◽  
Fengen Wang ◽  
Kaizhen Liu ◽  
Guoxin Huang ◽  
...  

The objective was to study the effects of sugar cane molasses addition on the fermentation quality and tastes of alfalfa silage. Fresh alfalfa was ensiled with no additive (Control), 1% molasses (M1), 2% molasses (M2), and 3% molasses (M3) for 206 days. The chemical composition and fermentation characteristics of the alfalfa silages were determined, the microbial communities were described by 16S rRNA sequencing, and the tastes were evaluated using an electronic tongue sensing system. With the amount of added molasses (M), most nutrition (dry matter and crude protein) was preserved and water-soluble carbohydrates (WSC) were sufficiently used to promote the fermentation, resulting in a pH reduction from 5.16 to 4.48. The lactic acid (LA) content and LA/acetic acid (AA) significantly increased, indicating that the fermentation had turned to homofermentation. After ensiling, Enterococcus and Lactobacillus were the dominant genus in all treatments and the undesirable microbes were inhibited, resulting in lower propionic acid (PA), butyric acid (BA), and NH3-N production. In addition, bitterness, astringency, and sourness reflected tastes of alfalfa silage, while umami and sourness changed with the amount of added molasses. Therefore, molasses additive had improved the fermentation quality and tastes of alfalfa silage, and the M3 group obtained the ideal pH value (below 4.5) and the best condition for long-term preservation.


2021 ◽  
Vol 7 (2) ◽  
pp. 86
Author(s):  
Bilal Ökmen ◽  
Daniela Schwammbach ◽  
Guus Bakkeren ◽  
Ulla Neumann ◽  
Gunther Doehlemann

Obligate biotrophic fungal pathogens, such as Blumeria graminis and Puccinia graminis, are amongst the most devastating plant pathogens, causing dramatic yield losses in many economically important crops worldwide. However, a lack of reliable tools for the efficient genetic transformation has hampered studies into the molecular basis of their virulence or pathogenicity. In this study, we present the Ustilago hordei–barley pathosystem as a model to characterize effectors from different plant pathogenic fungi. We generate U. hordei solopathogenic strains, which form infectious filaments without the presence of a compatible mating partner. Solopathogenic strains are suitable for heterologous expression system for fungal virulence factors. A highly efficient Crispr/Cas9 gene editing system is made available for U. hordei. In addition, U. hordei infection structures during barley colonization are analyzed using transmission electron microscopy, showing that U. hordei forms intracellular infection structures sharing high similarity to haustoria formed by obligate rust and powdery mildew fungi. Thus, U. hordei has high potential as a fungal expression platform for functional studies of heterologous effector proteins in barley.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Timothy P. Jenkins ◽  
David I. Pritchard ◽  
Radu Tanasescu ◽  
Gary Telford ◽  
Marina Papaiakovou ◽  
...  

Abstract Background Helminth-associated changes in gut microbiota composition have been hypothesised to contribute to the immune-suppressive properties of parasitic worms. Multiple sclerosis is an immune-mediated autoimmune disease of the central nervous system whose pathophysiology has been linked to imbalances in gut microbial communities. Results In the present study, we investigated, for the first time, qualitative and quantitative changes in the faecal bacterial composition of human volunteers with remitting multiple sclerosis (RMS) prior to and following experimental infection with the human hookworm, Necator americanus (N+), and following anthelmintic treatment, and compared the findings with data obtained from a cohort of RMS patients subjected to placebo treatment (PBO). Bacterial 16S rRNA high-throughput sequencing data revealed significantly decreased alpha diversity in the faecal microbiota of PBO compared to N+ subjects over the course of the trial; additionally, we observed significant differences in the abundances of several bacterial taxa with putative immune-modulatory functions between study cohorts. Parabacteroides were significantly expanded in the faecal microbiota of N+ individuals for which no clinical and/or radiological relapses were recorded at the end of the trial. Conclusions Overall, our data lend support to the hypothesis of a contributory role of parasite-associated alterations in gut microbial composition to the immune-modulatory properties of hookworm parasites.


Sign in / Sign up

Export Citation Format

Share Document