scholarly journals Dietary Resveratrol Alleviates AFB1-Induced Ileum Damage in Ducks via the Nrf2 and NF-κB/NLRP3 Signaling Pathways and CYP1A1/2 Expressions

Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 54
Author(s):  
Hao Yang ◽  
Yingjie Wang ◽  
Chunting Yu ◽  
Yihan Jiao ◽  
Ruoshi Zhang ◽  
...  

The aim of this study was to explore the mechanism underlying the protective effects of resveratrol against Aflatoxin B1-induced ileum injury in ducks. A corn–soybean meal-basal diet and two test diets (500 mg/kg resveratrol +0.2 mg Aflatoxin B1/kg, 0.2 mg AFB1/kg) were used in a 10-wk design trial (n = 15 ducks/group). These results showed that the toxicity of Aflatoxin B1 significantly reduced the antioxidant capacity of duck ileum and induced inflammation, oxidative stress, mitochondrial dysfunction and DNA damage in ducks. The expression of genes, including CYP1A2, CYP2A6, and CYP3A4, at the mRNA level was significantly upregulated (p < 0.05) by AFB1. The level of Nrf2 was suppressed (p < 0.05) and the mRNA and protein level of NF-κB was activated (p < 0.05) in the AFB1 group. However, supplementation with 500 mg/kg dietary resveratrol in Aflatoxin B1-induced ducks significantly ameliorated these alterations and decreased the mRNA expression of CYP1A1 and CYP1A2 (p < 0.05) and the production of AFB1-DNA adducts (p < 0.05). The results proved that resveratrol alleviated ileum injury induced by AFB1, decreased the production of AFB1-DNA adducts by downregulating the expression of CYP1A1 and CYP1A2, and reduced DNA damage and oxidative stress via the Nrf2/ Keap1 and NF-κB/NLRP3 signaling pathways.

2018 ◽  
Vol 26 ◽  
pp. 42-48 ◽  
Author(s):  
Grace A. Odongo ◽  
Nina Schlotz ◽  
Susanne Baldermann ◽  
Susanne Neugart ◽  
Benard Ngwene ◽  
...  

2014 ◽  
Vol 70 ◽  
pp. 205-213 ◽  
Author(s):  
Juliana Mara Serpeloni ◽  
Ilce Mara de Syllos Cólus ◽  
Fabíola Singaretti de Oliveira ◽  
Alexandre Ferro Aissa ◽  
Adriana Zerlotti Mercadante ◽  
...  

2012 ◽  
Vol 109 (12) ◽  
pp. 2253-2260 ◽  
Author(s):  
Ping Zheng ◽  
Bing Yu ◽  
Jun He ◽  
Gang Tian ◽  
Yuheng Luo ◽  
...  

Oxidative stress is detrimental to animals. Previous studies have indicated that arginine (Arg) may function as a potential substance against oxidative stress. The present study was conducted to explore the potential mechanisms behind the Arg-induced protective effects against oxidative stress in piglets. A total of thirty-six piglets were randomly allocated to six groups with six replicates per group. Piglets were subjected to three dietary treatments (namely two groups per treatment) in week 1 and fed with a basal diet (ArgL) or the basal diet supplemented with 0·8 % (ArgM) or 1·6 % (ArgH)l-Arg, respectively. On day 8, piglets were injected intraperitoneally either with diquat (10 mg/kg body weight) or sterile saline. The whole trial lasted 11 d. Results showed that dietary Arg supplementation did not affect growth performance in week 1. Oxidative stress significantly decreased the growth performance of piglets (P< 0·05). However, ArgH attenuated the negative effects of oxidative stress on feed intake and significantly increased the total antioxidant capacity in the liver under oxidative stress (P< 0·05). Both ArgM and ArgH enhanced the activities of plasma glutathione peroxidases and superoxide dismutases and decreased the IL-6 and TNF-α mRNA level in the liver under oxidative stress (P< 0·05). The present study not only shows that Arg can function as a potential nutrient to alleviate oxidative stress responses through the enhancement of antioxidant capacity, and inhibition of the expression of inflammatory cytokines, but the results also suggest that alleviation of oxidative stress responses using dietary nutrient components deserves further attention in the future.


Toxins ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 23 ◽  
Author(s):  
Shahid Ali Rajput ◽  
Lvhui Sun ◽  
Ni-Ya Zhang ◽  
Mahmoud Mohamed Khalil ◽  
Zhao Ling ◽  
...  

Aflatoxin B1 (AFB1) is a widely spread mycotoxin contaminates food and feed, causing severe oxidative stress damages and immunotoxicity. Grape seed proanthocyanidin (GSPE), a natural antioxidant with wide range of pharmacological and medicinal properties. The goal of the present study was to investigate the protective effects of GSPE against AFB1-induced immunotoxicity and oxidative stress via NF-κB and Nrf2 signaling pathways in broiler chickens. For the experiment, 240 one-day old Cobb chicks were allocated into four dietary treatment groups of six replicates (10 birds per replicate): 1. Basal diet (control); 2. Basal diet + AFB1 1mg/kg contaminated corn (AFB1); 3. Basal diet + GSPE 250 mg/kg (GSPE); 4. Basal diet + AFB1 1 mg/kg + GSPE 250 mg/kg (AFB1 + GSPE). The results showed that GSPE significantly decreased serum inflammatory cytokines TNF-α, IFN-γ, IL-1β, IL-10, and IL-6 induced by AFB1. Similarly, GSPE + AFB1 treated group revealed a significant decrease in mRNA expressions of pro-inflammatory cytokines (TNF-α, IFN-γ, IL-1β, and IL-6) in the splenic tissue compared to the AFB1 treatment group. In addition, western blotting results manifested that GSPE treatment normalized the phosphorylation of nuclear factor kappa B (p65) and the degradation of IκBα protein induced by AFB1. Furthermore, GSPE enhanced the antioxidant defense system through activating the nuclear factor-erythroid-2-related factor (Nrf2) signaling pathway. The mRNA and protein expression level of Nrf2 and its down streaming associated genes were noted up-regulated by the addition of GSPE, and down-regulated in the AFB1 group. Taken together, GSPE alleviates AFB1-induced immunotoxicity and oxidative damage by inhibiting the NF-κB and activating the Nrf2 signaling pathways in broiler chickens. Conclusively, our results suggest that GSPE could be considered as a potential natural agent for the prevention of AFB1-induced immunotoxicity and oxidative damage.


2020 ◽  
Vol 21 (8) ◽  
pp. 626-632 ◽  
Author(s):  
Dawei Liu ◽  
Qinghua Wu ◽  
Hongyi Liu ◽  
Changhu Lu ◽  
Chao Gu ◽  
...  

Background: The red-crowned crane (Grus japonensis) is one of the most vulnerable bird species in the world. Mycotoxins are toxic secondary metabolites produced by fungi and considered naturally unavoidable contaminants in animal feed. Our recent survey indicated that the mycotoxins had the potential to contaminate redcrowned crane’s regular diets in China. Objective: This experiment was conducted to investigate the protective effects of mycotoxin binder montmorillonite (Mont) on growth performance, serum biochemistry and oxidative stress parameters of the red-crowned crane. Methods: 16 red-crowned cranes were divided into four groups and fed one of the following diets; a selected diet, regular diet, or the selected diet or regular diet with 0.5% montmorillonite added to the diets. The cranes' parameters of performance, hematology, serum biochemistry and serum oxidative stress were measured. Results: Consuming regular diets decreased the average daily feed intake (ADFI), levels of haemoglobin (Hb), platelet count (PLT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), but increased the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatine kinase (CK) and lactate dehydrogenase (LDH). The supplementation of 0.5% Mont provided protection for the red-crowned crane in terms of feed intake, serum biochemistry and oxidative stress. Moreover, Mont supplementation had no adverse effect on the health of red-crowned crane. Conclusions: Taken together, these findings suggested that the addition of dietary Mont is effective in improving the health of red-crowned crane.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 802
Author(s):  
Teresa Vezza ◽  
Aranzazu M. de Marañón ◽  
Francisco Canet ◽  
Pedro Díaz-Pozo ◽  
Miguel Marti ◽  
...  

Type 2 diabetes is a chronic disease widespread throughout the world, with significant human, social, and economic costs. Its multifactorial etiology leads to persistent hyperglycemia, impaired carbohydrate and fat metabolism, chronic inflammation, and defects in insulin secretion or insulin action, or both. Emerging evidence reveals that oxidative stress has a critical role in the development of type 2 diabetes. Overproduction of reactive oxygen species can promote an imbalance between the production and neutralization of antioxidant defence systems, thus favoring lipid accumulation, cellular stress, and the activation of cytosolic signaling pathways, and inducing β-cell dysfunction, insulin resistance, and tissue inflammation. Over the last few years, microRNAs (miRNAs) have attracted growing attention as important mediators of diverse aspects of oxidative stress. These small endogenous non-coding RNAs of 19–24 nucleotides act as negative regulators of gene expression, including the modulation of redox signaling pathways. The present review aims to provide an overview of the current knowledge concerning the molecular crosstalk that takes place between oxidative stress and microRNAs in the physiopathology of type 2 diabetes, with a special emphasis on its potential as a therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document