scholarly journals The Combined Effect of Drought Stress and Nitrogen Fertilization on Soybean

Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 384
Author(s):  
Oqba Basal ◽  
András Szabó

Soybean is one of the most important crops worldwide; however, its production and produced seed quality are challenged by the increasingly reported drought waves because of its relative susceptibility to drought stress conditions. Nitrogen (N) is a major macronutrient that has distinctive influence on soybean, especially if applied in correct rates. Moreover, N has an additive importance under drought stress conditions. An experiment was carried out in Debrecen, Hungary in 2017, 2018, and 2019 to investigate the sole and the combined effects of N application under different irrigation regimes on soybean physiology, yield, and its components in addition to the quality of the produced yield. Results showed that the morpho-physiological traits, in addition to the yield component traits were influenced by both fertilization rates and irrigation regimes. Most importantly, high N rate is not recommended with the absence of drought conditions as, compared to low rate, it decreased flower and pod number per plant, plant height, and seed yield. On the other hand, high N rate enhanced most traits under drought stress conditions. 100-seed weight had the highest correlation with yield, followed by flower and pod number per plant, plant height, and Normalized Difference Vegetation Index (NDVI).

2021 ◽  
Vol 12 ◽  
Author(s):  
Boris Lazarević ◽  
Zlatko Šatović ◽  
Ana Nimac ◽  
Monika Vidak ◽  
Jerko Gunjača ◽  
...  

Basil is one of the most widespread aromatic and medicinal plants, which is often grown in drought- and salinity-prone regions. Often co-occurrence of drought and salinity stresses in agroecosystems and similarities of symptoms which they cause on plants complicates the differentiation among them. Development of automated phenotyping techniques with integrative and simultaneous quantification of multiple morphological and physiological traits enables early detection and quantification of different stresses on a whole plant basis. In this study, we have used different phenotyping techniques including chlorophyll fluorescence imaging, multispectral imaging, and 3D multispectral scanning, aiming to quantify changes in basil phenotypic traits under early and prolonged drought and salinity stress and to determine traits which could differentiate among drought and salinity stressed basil plants. Ocimum basilicum “Genovese” was grown in a growth chamber under well-watered control [45–50% volumetric water content (VWC)], moderate salinity stress (100 mM NaCl), severe salinity stress (200 mM NaCl), moderate drought stress (25–30% VWC), and severe drought stress (15–20% VWC). Phenotypic traits were measured for 3 weeks in 7-day intervals. Automated phenotyping techniques were able to detect basil responses to early and prolonged salinity and drought stress. In addition, several phenotypic traits were able to differentiate among salinity and drought. At early stages, low anthocyanin index (ARI), chlorophyll index (CHI), and hue (HUE2D), and higher reflectance in red (RRed), reflectance in green (RGreen), and leaf inclination (LINC) indicated drought stress. At later stress stages, maximum fluorescence (Fm), HUE2D, normalized difference vegetation index (NDVI), and LINC contribute the most to the differentiation among drought and non-stressed as well as among drought and salinity stressed plants. ARI and electron transport rate (ETR) were best for differentiation of salinity stressed plants from non-stressed plants both at early and prolonged stress.


2018 ◽  
Vol 86 (1) ◽  
Author(s):  
Dian Mutiara AMANAH ◽  
Soekarno Mismana PUTRA

Increasing productivity and sugar yield of sugarcane are required to meet the increasing demand for sugar. Biostimulants application is one of the effort to increase the productivity and rendement of sugar, especially at drought stress conditions. The purpose of this study was to determine the effect of biostimulants on the performance of sugarcane var. Kidang Kencana known susceptible to drought stress. The research was conducted in the greenhouse with several biostimulant treatments i.e. P0: Control, P1: Citorin-R, P2: Citorin-R and Citorin-S (1x spray) P3: Citorin-R and Citorin -S (2x spray), P4: Citorin-R, Citorin-S (1x spray) and Humic Acid, P5: Citorin-R, Citorin-S (1x spray), Humic Acid and Mycorrhiza, P6: Citorin-R, Citorin-S (2x spray), Humic Acid and Mycorrhiza. All treatments were subjected with drought stress started from 4 months after planting. The biostimulant treatments resulted in better growth and yield on treated-biostimulan compared to these of control. The best treatment for the vegetative growth and the productive parameters was P6. The plant height, stems diameter, segment number, weight, and sap volume at P6 were respectively 32.2%, 5.5%, 24.0%, 53.2% and 44.7% higher than the control. The best treatment for the sugar yield was P5 and the productivity parameters was P6 respectively, 42.5% and 70.5% higher than the control. The best treatments contained Citorin biostimulant. Humic Acid and Mycorrhiza which increased growth and sugar yield of Kidang Kencana sugarcane at drought stress conditions.[Keywords: drought stress Kidang Kencana variety, plant biostimulant, productivity, sugar yield]. AbstrakPeningkatan produktivitas dan rendemen gula tanaman tebu diperlukan untuk memenuhi kebutuhan gula yang terus meningkat. Aplikasi biostimulan merupakan salah satu upaya untuk meningkatkan produktivitas dan rendemen gula khususnya pada kondisi tercekam kekeringan. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh pemberian beberapa produk biostimulan terhadap produktivitas tanaman tebu varietas Kidang Kencana yang rentan cekaman kekeringan. Penelitian dilakukan di rumah kaca dengan perlakuan beberapa perlakuan biostimulan pada tanaman tebu, yaitu P0: Kontrol, P1: Citorin-R, P2: Citorin-R dan Citorin-S (1x semprot) P3: Citorin-R dan Citorin-S (2x semprot), P4: Citorin-R, Citorin-S (1x semprot) dan Asam Humat, P5: Citorin-R, Citorin-S (1x semprot), Asam Humat dan Mikoriza, P6: Citorin-R, Citorin-S (2x semprot), Asam Humat dan Mikoriza. Seluruh perlakuan diberi kondisi cekaman kekeringan pada 4 bulan setelah tanam. Perlakuan biostimulan memberikan pengaruh serta hasil yang lebih baik dibandingkan dengan kontrol baik fase vegetatif maupun produktif. Perlakuan terbaik selama fase vegetatif hingga 5 bulan setelah tanam adalah P6. Tinggi batang panen, diameter batang panen, jumlah ruas batang, bobot batang dan volume nira pada P6 meningkat 32,2%, 5,5%, 24,0%, 53,2% dan 44,7% lebih tinggi dibandingkan dengan kontrol. Perlakuan terbaik untuk parameter rendemen gula adalah P5 dan produktivitas gula adalah P6, masing-masing 42,5% dan 70,5% lebih tinggi dibandingkan kontrol. Perlakuan terbaik tersebut mengandung komponen biostimulan yaitu Citorin, Asam Humat dan Mikoriza yang dapat meningkatkan pertumbuhan dan rendemen gula tanaman tebu Kidang Kencana pada kondisi cekaman kekeringan. [Kata kunci: cekaman kekeringan, varietas Kidang Kencana, biostimulan tanaman, produktivitas, rendemen gula].


2017 ◽  
Vol 1 ◽  
pp. 307
Author(s):  
Amir Hosein Shirani Rad ◽  
Nasser Shahsavari ◽  
Nadia Safavi Fard

     In order to evaluation of canola advanced lines response to delay plantings under late season drought stress conditions, an experiment was carried out in a factorial split-plot arrangement based on RCBD with three replications during two years (2012-2014) in Karaj of Iran. Treatments were; (1): Planting date in two levels (16 October and 1 November), (2): irrigation, in two levels (I1: normal irrigation as control and I2: restricted irrigation after pod formation stage) as main plots and (3): twelve oilseed rape genotypes as sub plots such as BAL2, BAL1, BAL3, BAL6, BAL8, BAL9, BAL11, BAL15, L72, R15, L109 and Okapi. The interaction effects of planting date, irrigation and genotype on pod number per plant, seed number per pod, 1000-seed weight, seed yield, and oil yield were significant at 1% level probability. The maximum seed yield under planting at the appropriate time (16 October), normal irrigation and drought stress conditions (restricted irrigation after pod formation stage) was observed in Okapi and L109, respectively). Among genotypes, R15 line under delay planting (1 November) and both normal irrigation and drought stress conditions (restricted irrigation after pod formation stage) showed the maximum seed yield.


2006 ◽  
Vol 63 (2) ◽  
pp. 130-138 ◽  
Author(s):  
Alexandre Cândido Xavier ◽  
Bernardo Friedrich Theodor Rudorff ◽  
Mauricio Alves Moreira ◽  
Brummer Seda Alvarenga ◽  
José Guilherme de Freitas ◽  
...  

Hyperspectral crop reflectance data are useful for several remote sensing applications in agriculture, but there is still a need for studies to define optimal wavebands to estimate crop biophysical parameters. The objective of this work is to analyze the use of narrow and broad band vegetation indices (VI) derived from hyperspectral field reflectance measurements to estimate wheat (Triticum aestivum L.) grain yield and plant height. A field study was conducted during the winter growing season of 2003 in Campinas, São Paulo State, Brazil. Field canopy reflectance measurements were acquired at six wheat growth stages over 80 plots with four wheat cultivars (IAC-362, IAC-364, IAC-370, and IAC-373), five levels of nitrogen fertilizer (0, 30, 60, 90, and 120 kg of N ha-1) and four replicates. The following VI were analyzed: a) hyperspectral or narrow-band VI (1. optimum multiple narrow-band reflectance, OMNBR; 2. narrow-band normalized difference vegetation index, NB_NDVI; 3. first- and second-order derivative of reflectance; and 4. four derivative green vegetation index); and b) broad band VI (simple ratio, SR; normalized difference vegetation index, NDVI; and soil-adjusted vegetation index, SAVI). Hyperspectral indices provided an overall better estimate of biophysical variables when compared to broad band VI. The OMNBR with four bands presented the highest R² values to estimate both grain yield (R² = 0.74; Booting and Heading stages) and plant height (R² = 0.68; Heading stage). Best results to estimate biophysical variables were observed for spectral measurements acquired between Tillering II and Heading stages.


2017 ◽  
Vol 109 (2) ◽  
pp. 403 ◽  
Author(s):  
Mohammad Reza Naghavi ◽  
Marouf Khalili

<p>In order to study of genetic diversity and classify physio-agronomic characters under normal irrigation and drought stress in wheat cultivars, 15 cultivars were evaluated in the research farm of University of Mahabad, Iran. According to stepwise regression some of traits entered to final model that as far to correlation coefficients and path analysis regarding, the biggest part of correlation coefficient and direct effect was achieved for number of grains per spike, number spikes per plant with grain yield under two conditions. These traits had the highest indirect effect on the grain yield mutually. So, screening for high value for these traits can bring increase in wheat grain yield under two conditions. Factor analysis detected three and four factors which explained 91.23 and 92.43 percent of the total variation in non-drought stress and drought stress conditions, respectively. In drought stress condition the first factor, second factor, third factor and fourth factors were named as yield component, physiological, biomass and growth, and yield factor respectively. Cluster analysis based on the three and four factors grouped cultivars into the two groups under normal and three groups under drought stress conditions. Generally, tolerant cultivars can be used for direct culture or as parents for create of variation in breeding programs.</p>


2021 ◽  
Author(s):  
Yichen Kang ◽  
Shanice Van Haeften ◽  
Daniela Bustos-Korts ◽  
Stjepan Vukasovic ◽  
Sana Ullah Khan ◽  
...  

Durum wheat (Triticum turgidum L. ssp. Durum) is largely grown in rainfed production systems around the world. New cultivars with improved adaptation to water-limited environments are required to sustain productivity in the face of climate change. Physiological traits related to canopy development underpin the production of biomass and yield, as they interact with solar radiation and affect the timing of water use throughout the growing season. Despite their importance, there is limited research on the relationship between canopy development and yield in durum wheat, in particular studies exploring temporal canopy dynamics under field conditions. This study reports the genetic dissection of canopy development in a durum wheat nested-association mapping population evaluated for longitudinal normalized difference vegetation index (NDVI) measurements. Association mapping was performed to identify quantitative trait loci (QTL) for time-point NDVI and spline-smoothed NDVI trajectory traits. Yield effects associated with QTL for canopy development were explored using data from four rainfed field trials. Four QTL were associated with yield in specific environments, and notably, were not associated with a yield penalty in any environment. Alleles associated with slow canopy closure increased yield. This was likely due to a combined effect of optimised timing of water-use and pleiotropic effects on yield component traits, including spike number and spike length. Overall, this study suggests that slower canopy closure is beneficial for durum wheat production in rainfed environments. Selection for traits or loci associated with canopy development may indirectly improve yield and support selection for more resilient and productive cultivars in water limited environments.


Author(s):  
M. D. H. Dewdar

This study aimed to investigate the performance of three cotton (Gossypium barbadense L.) genotypes as affected by drought stress at three irrigation regimes; 14 (S-0), 21(S-1) and 28 (S-2) days that were started after the first irrigation. To achieve this goal, a field experiment was conducted as split block design at the Experimental Farm of the Faculty of Agriculture, El-Fayoum Univ. The results indicated that the irrigation regimes mean squares of combined data were highly significant for earliness traits, also as well as yield and yield components.  Most of fiber properties were not affected by water stress conditions. Significant differences were found among the non- stress (S-0) and the stress treatments (S-1 and S-2) for mean performances of the three earliness traits. Treatment S-2 led to significant decrease in yield and yield components compared to S-0. The results showed that Giza 85 variety gave the highest fiber length, fiber strength and was finer cultivars having the lower micronaire values. The interaction between genotypes and stress treatments was significant for most traits.G1,G2 and G3 cotton varieties  exhibited highest seed cotton yield kg ha-1 (yield potential) in the non- stress treatment (S-0).  Giza 90 variety outyielded the other two varieties under stress treatment (S-2) compared to those of Giza 85 and Giza 83. The superiority of Giza 90 variety could be attributed to its high yield components., while Giza 90 was relatively stress susceptible and similar trend of those obtained using data of relative productivity (%) which confirm that the genotype Giza 83 and Giza 85 are more drought tolerance and could be used as sources of drought stress tolerance in breeding programs and tolerance to water stress conditions.


2010 ◽  
Vol 46 (No. 1) ◽  
pp. 27-34 ◽  
Author(s):  
T. Abedi ◽  
H. Pakniyat

The study was undertaken to identify the responses of antioxidant enzyme activities and their isozyme patterns in seedlings of 10 oilseed rape (Brassica napus L.) cultivars under drought stress conditions. Plants were grown under three irrigation regimes (FC; field capacity, 60% FC and 30% FC) in a greenhouse. Drought stress preferentially enhanced the activities of superoxide dismutase (SOD) and guaiacol peroxidase (POD) whereas it decreased catalase (CAT) activity. Licord with the highest level of enzyme activity under both optimum and limited irrigation regimes is reported as the most tolerant cultivar. Whereas Hyola 308 and Okapy, having the lowest enzymes activities, are mentioned as cultivars sensitive to drought stress. The native polyacrylamide gel electrophoresis (PAGE) analysis detected eight SOD isozymes. Oilseed rape leaves contained three isoforms of Mn-SOD and five isoforms of Cu/Zn-SOD. The expression of Mn-SOD was preferentially enhanced by drought stress. Five POD isoforms were detected in oilseed rape leaves. The intensities of POD-4 and -5 were enhanced under drought stress. According to the results, the appearance of new isozyme bands under drought stress conditions may be used as a biochemical marker to differentiate drought tolerant cultivars under drought stress.


2020 ◽  
Vol 47 (3) ◽  
pp. 232-239
Author(s):  
Rina Hapsari Wening ◽  
Bambang Sapta Purwoko ◽  
Willy Bayuardi Suwarno ◽  
Indrastuti Apri Rumanti ◽  
Dan Nurul Khumaida

Drought is an important constraint for rice production in rainfed lowland and shallow freshwater swamp. The area often experiences drought stress at the generative stage of the plants. This study aimed at selecting adaptive lines to terminal drought and formulating a multiple regression model to estimate the productivity under drought stress conditions at the generative stage. The experiment was conducted in a greenhouse of the Indonesian Center for Rice Research, Subang, West Java, using an augmented design with five blocks. The genetic material used was ninety-nine lines and four checks varieties, namely Inpari 30, Limboto, Salumpikit, and IR 20. The model was formulated using stepwise regression analysis. Based on this study, ten lines were adapted to drought stress at the generative stage, namely B13983E-KA-12-2, B13926E-KA-13, B13507E-MR-19, B14366E-KY-50, B14366E-KY-37, IR86384- 46-3-1-B, BP20452e-PWK-0-SKI-1-1, BP20452e-PWK-0-SKI-2-4, BP20452e-PWK-0-SKI-3-3, and BP29790d-PWK-3 -SKI-1-5. The B13507E-MR-19 had the highest productivity (4.02 ton ha-1) under drought stress conditions. Yield under drought stress in the greenhouse could be predicted using a linear regression model involving plant height at early vegetative stage, plant height up to the panicle, tiller number at early vegetative stage, tiller number at late vegetative stage, tiller number at flowering, heading time, number of filled grain, and panicle exsertion length. This model was able to explain 75.92% of yield variation. Potential rice lines and the regression model obtained are expected to contribute to the development of rice varieties adaptive to drought. Keywords: drought tolerant, freshwater swamp, rainfed, regression model  


Sign in / Sign up

Export Citation Format

Share Document