scholarly journals Weed Management in Dry Direct-Seeded Rice: A Review on Challenges and Opportunities for Sustainable Rice Production

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1264
Author(s):  
Kapila Shekhawat ◽  
Sanjay Singh Rathore ◽  
Bhagirath S. Chauhan

Rice cultivation always remains significant for food and livelihood security. The predictions of increasing water deficiency under a changing climate and escalating labor shortages in agriculture have brought a paradigm swing in rice cultivation from conventionally flooded transplanting to direct-seeded rice (DSR). DSR cultivation can potentially address the concerns of diminishing natural resources and mounting production costs in the establishment of transplanted rice. The transition towards DSR saves water, reduces duration to maturity as well as labor required, and reduces negative environmental footprints. Despite all these recompenses, the potential yield losses through enormous weed menaces under DSR remains a challenge and may reduce yield by up to 50%. In this review, we examine the extent of weed infestation, weed shift and the losses in dry DSR (DDSR). Various regional and global scientific efforts made under DDSR have been assessed in the present and the smart weed-management strategies suggested can be adopted after scrutiny. Integration of different weed management approaches, namely prevention, cultural, mechanical, and chemical, have been discussed, which can pave the way for worldwide adoption of DDSR, especially in South Asia. In Asia, 22% of the acreage of total rice cultivation is under DSR and the region-specific integration of these weed-management approaches might reduce herbicide use in these areas by up to 50%.

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1264
Author(s):  
Nitika Sandhu ◽  
Shailesh Yadav ◽  
Vikas Kumar Singh ◽  
Arvind Kumar

Paddy production through conventional puddled system of rice cultivation (PTR) is becoming more and more unsustainable—economically and environmentally—as this method is highly resource intensive and these resources are increasingly becoming scarce, and consequently, expensive. The ongoing large-scale shift from puddled system of rice cultivation PTR to direct seeded rice (DSR) necessitates a convergence of breeding, agronomic and other approaches for its sustenance and harnessing natural resources and environmental benefits. Current DSR technology is largely based on agronomic interventions applied to the selected varieties of PTR. In DSR, poor crop establishment due to low germination, lack of DSR-adapted varieties, high weed-nematode incidences and micronutrient deficiency are primary constraints. The approach of this review paper is to discuss the existing evidences related to the DSR technologies. The review highlights a large number of conventionally/molecularly characterized strains amenable to rapid transfer and consolidation along with agronomic refinements, mechanization and water-nutrient-weed management strategies to develop a complete, ready to use DSR package. The review provides information on the traits, donors, genes/QTL needed for DSR and the available DSR-adapted breeding lines. Furthermore, the information is supplemented with a discussion on constrains and needed policies in scaling up the DSR adoption.


2020 ◽  
Vol 12 (14) ◽  
pp. 5561 ◽  
Author(s):  
Bhagya Nathali Silva ◽  
Murad Khan ◽  
Kijun Han

The emergence of the Internet of Things (IoT) notion pioneered the implementation of various smart environments. Smart environments intelligibly accommodate inhabitants’ requirements. With rapid resource shrinkage, energy management has recently become an essential concern for all smart environments. Energy management aims to assure ecosystem sustainability, while benefiting both consumers and utility providers. Although energy management emerged as a solution that addresses challenges that arise with increasing energy demand and resource deterioration, further evolution and expansion are hindered due to technological, economical, and social barriers. This review aggregates energy management approaches in smart environments and extensively reviews a variety of recent literature reports on peak load shaving and demand response. Significant benefits and challenges of these energy management strategies were identified through the literature survey. Finally, a critical discussion summarizing trends and opportunities is given as a thread for future research.


2018 ◽  
Vol 6 (3) ◽  
pp. 181-198 ◽  
Author(s):  
Bishal Bista

Rice (Oryza sativaL.) is a major staple food crop that feeds around 60% of the world’s population. It is a major food crop in terms of production, economy and is grown in all ecological zones of Nepal. In Nepal, traditional method of rice cultivation is widely accepted in which 20-25 days old seedlings are transplanted in the puddled field. Looming water scarcity, water-intensive traditional method of rice cultivation, escalating labour costs pressurize the development of alternative which is highly sustainable and profitable. Direct-seeded rice (DSR) offers a very good opportunity that can cope up the global need and reduces the water use to 50%, labour cost to 60% and increases productivity by 5-10%. It involves sowing of pre-germinated seeds into wet soil surface (wet seeding), dry soil surface (dry seeding) and standing water (water seeding). Weeds are the major constraint in direct-seeded rice (DSR) reducing the crop yield upto 90% and sometimes even crop failure. Enhanced nutrient use efficiency and integrated weed management can produce comparable yields to that of transplanted rice (TPR) encouraging many farmers to switch to DSR. Methane gas emission is significantly lower in DSR than in conventionally tilled puddled transplanted rice mitigating the world’s threat of global warming. Blast disease and root-knot nematode (RKN) are other important problems associated with DSR. Based on the evidences collected, the article reviews integrated package of cultivation technologies associated with DSR, advantages, constraints and likeliness of DSR to be the future of rice cultivation in Nepal.Int. J. Appl. Sci. Biotechnol. Vol 6(3): 181-198


2016 ◽  
Vol 34 (1) ◽  
pp. 57-64 ◽  
Author(s):  
S. MUHAMMAD ◽  
I. MUHAMMAD ◽  
A. SAJID ◽  
L. MUHAMMAD ◽  
A. MAQSHOOF ◽  
...  

Weed management is a primary concern in direct seeded rice (DSR) cropping because weed growth becomes a major constraint on crop yield. A two year field study was set up to evaluate the effect of various weed control measures on crop growth, grain yield and grain quality of DSR. The experiment involved five different weed control measures: hand weeding, hoeing, inter-row tine cultivation, inter-row spike hoeing and herbicide treatment (Nominee 100 SC). The extent of weed control (compared to a non-weeded control) ranged from 50-95%. The highest crop yield was obtained using hand weeding. Hand weeding, tine cultivation and herbicide treatment raised the number of fertile rice tillers formed per unit area and the thousand grain weight. Tine cultivation provided an effective and economical level of weed control in the DSR crop.


2006 ◽  
Vol 63 (10) ◽  
pp. 2149-2153 ◽  
Author(s):  
Ray Hilborn ◽  
John Annala ◽  
Daniel S Holland

The history of orange roughy (Hoplostethus atlanticus) stocks, primarily in New Zealand and Australia, is commonly used as an example of the inability to manage fisheries resources. We review the history and status of the New Zealand orange roughy fishery and show that the total loss of potential biological yield from overfishing is no more than 8.3% (1260 tonnes (t)·year–1) of the potential yield. The losses from underfishing are estimated to be 810 t·year–1. We consider the biological and economic consequences of alternative management approaches to the New Zealand orange roughy fishery. We suggest that given the uncertainty in stock abundance and productivity and market and processing capacity limits, the management of New Zealand orange roughy stocks has been close to economically optimal and has produced near maximum sustainable yield from the resource.


2012 ◽  
Vol 26 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Bhagirath S. Chauhan

Rice is a principal source of food for more than half of the world population, and more than 90% of rice worldwide is grown and consumed in Asia. A change in establishment method from manual transplanting of rice seedlings to dry-seeded rice (DSR) has occurred in some countries as growers respond to increased costs or decreased availability of labor or water. However, weeds are a major constraint to DSR production because of the absence of the size differential between the crop and the weeds and the suppressive effect of standing water on weed growth at crop establishment. Herbicides are used to control weeds in DSR, but because of concerns about the evolution of herbicide resistance and a scarcity of new and effective herbicides, there is a need to integrate other weed management strategies with herbicide use. In addition, because of the variability in the growth habit of weeds, any single method of weed control cannot provide effective and season-long control in DSR. Various weed management approaches need to be integrated to achieve effective, sustainable, and long-term weed control in DSR. These approaches may include tillage systems; the use of crop residue; the use of weed-competitive cultivars with high-yield potential; appropriate water depth and duration; appropriate agronomic practices, such as row spacing and seeding rates; manual or mechanical weeding; and appropriate herbicide timing, rotation, and combination. This article aims to provide a logical perspective of what can be done to improve weed management strategies in DSR.


2020 ◽  
Vol 52 (1) ◽  
pp. 1
Author(s):  
Narayan Chandra Banik ◽  
Ashok Kumar ◽  
Bidhan K. Mohapatra ◽  
Vivek Kumar ◽  
Chilamkurthi Sreenivas ◽  
...  

2011 ◽  
Vol 149 (4) ◽  
pp. 427-435 ◽  
Author(s):  
J. RODENBURG ◽  
H. MEINKE ◽  
D. E. JOHNSON

SUMMARYGlobal changes including increases in temperature, atmospheric greenhouse gases, soil degradation and competition for land and water resources, will have multiple impacts on rice production systems in Africa. These changes will affect weed communities, and management approaches must be adapted to take this into account. Higher temperatures and limited water availability will generally advantage C4over C3plants (e.g. rice). Conversely, elevated carbon dioxide (CO2) levels will improve the competitiveness of rice relative to C4weeds, which comprise many of the problem weeds of rice. Increased atmospheric CO2levels may also improve tolerance of rice against parasitic weeds, while prevalence of parasitic species may be amplified by soil degradation and more frequent droughts or floods. Elevated CO2levels tend to promote growth below-ground relative to above-ground, particularly in perennial (C3) species. This may render mechanical control of weeds within a cropping season less effective or even counterproductive. Increased CO2levels, rainfall and temperature may also reduce the effectiveness of chemical control, while the implementation of adaptation technologies, such as water-saving irrigation regimes, will have negative consequences for rice–weed competition. Rain-fed production systems are prevalent throughout Africa and these are likely to be most vulnerable to direct effects of climate change (e.g. higher temperatures and changes in rainfall patterns). Effective weed management strategies in these environments could encompass off-season tillage, the use of well-adapted cultivars (i.e. those with drought and heat tolerance, high weed competitiveness and parasitic weed resistance or tolerance) and rotations, intercropping or short, off-season fallows with weed-suppressive legumes including those that suppress parasitic weeds. In irrigated, non-flooded rice systems, weeds are expected to become more serious. Specifically, perennial rhizomatous C3weeds and species adapted to hydromorphic conditions are expected to increase in prevalence. By implementing an integrated weed management strategy primarily targeted at weed prevention, dependency on flood water, herbicides and mechanical control can be lessened. Off-season deep tillage, stale seed bed techniques, use of clean seeds and irrigation water, competitive cultivars, timely transplanting at optimum spacing and judicious fertilizer timings are suitable candidate components for such a strategy. Integrated, novel approaches must be developed to assist farmers in coping with the challenges of weed control in the future.


2017 ◽  
Vol 28 (4) ◽  
pp. 517
Author(s):  
R. M. U. S. Bandara ◽  
B. Marambe ◽  
A. S. K. Abeysekara ◽  
W. M. U. B. Wickrama ◽  
H. M. M. K. K. H. Dissanayaka ◽  
...  

2018 ◽  
Vol 17 ◽  
pp. 30-38
Author(s):  
S Marasini ◽  
TN Joshi ◽  
LP Amgain

Rice (Oryza sativa) is the major food crop in terms of production and economy and grown in all ecological regions of Nepal. Rice is cultivated traditionally through transplanting of 20-25 days old seedling in the country. Due to unavailability of suitable technology for rice cultivation, there is a huge yield gap in rice production of Nepal. Country has made target of self-sufficiency in rice production by 2020 AD. This target can be achieved through adoption of Direct seeded rice cultivation technology of rice cultivation which also helps to adapt in the climate change scenario of Nepal. Due to issues of water scarcity and expensive labour, direct seeded rice cultivation technology is adopting worldwide. Direct seeded rice is a resource conservation technology and reduces water and labor use by 50%. Productivity of DSR is 5-10% more than the yield of transplanted rice. It offers a very exhilarating opportunity to improve water and environmental sustainability. Methane gas emissions is lower in DSR than with conventionally tilled transplanted puddle rice. It involves sowing pre-germinated seeds into a puddled soil surface (wet seeding), standing water (water seeding) or dry seeding into a prepared seedbed (dry seeding). Precise water management, particularly during crop emergence phase (first 7-15 days after sowing), is crucial in direct seeded rice. Furthermore, weed infestation is the major problem, which can cause large yield losses in direct seeded rice. Weed management in DSR can be done through chemical, hand weeding or stale seed bed method.


Sign in / Sign up

Export Citation Format

Share Document