scholarly journals Acidified Biogas Residues Improve Nutrient Uptake and Growth of Young Maize

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 344
Author(s):  
Jens Torsten Mackens ◽  
Bruno Maximilian Görlach ◽  
Karl-Hermann Mühling

Biogas residues (BGR) contain a variety of plant nutrients and are, therefore, valuable fertilizers. However, ammonia (NH3) emissions occur during slurry and BGR application. These emissions can be reduced by lowering the pH of the BGR. Acidification technology works well for slurry, but little is known about the effects on fertilizer properties of acidified BGR (ABGR). This study aimed to examine the impact of acidification on the chemical composition of BGR and its influence on plant growth of juvenile maize and the soil pH, as well as the soluble soil phosphorous (P) and manganese (Mn), after application of ABGR. The soluble amount of nutrients in BGR was compared with that in ABGR. In an outdoor pot experiment, BGR and ABGR were incorporated in soil, and maize was grown for 8 weeks. Two different BGR P levels were compared with (NH4)2HPO4 and a control treatment without additional P. BGR acidification increased dissolved amounts of P from 15% to 44%, calcium from 6% to 59%, magnesium from 7% to 37%, and Mn from 2% to 15%. The dry matter of ABGR-fertilized maize was 34%, 45% higher than that of BGR-fertilized maize. The soluble Mn content in the soil was 74% higher with the low ABGR dose and 222% higher with the higher ABGR dose than the BGR treatments. The fertilizer efficiency of ABGR was higher than that of BGR, indicating that the absolute amount of applied fertilizer could be reduced in systems using ABGR.

Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 474 ◽  
Author(s):  
Spyridon A. Petropoulos ◽  
Ângela Fernandes ◽  
Nikolaos Polyzos ◽  
Vasileios Antoniadis ◽  
Lillian Barros ◽  
...  

Potato cultivation is quite demanding in inorganic nutrients and adequate fertilization is a key factor for maximizing yield and producing tubers of high quality. In the present study, a field experiment was carried out to evaluate the effect of various forms of fertilization on crop performance and the nutritional value and chemical composition of two potato varieties (cv. Spunta and cv. Kennebec). For this purpose, five different fertilizer treatments were applied namely: control (C), standard fertilizer (T1), standard fertilizer + zeolite (T2), manure (T3) and slow release nitrogen fertilizer (T4). According to the results, it was observed that slow release treatment (T4) achieved the highest yield for both varieties, while the control treatment presented significantly lower yield compared to the studied fertilization regimes. The dry matter of leaves and shoots was higher in T1 treatment for cv. Kennebec and in T2 and T4 treatments for cv. Spunta, whereas the control treatment presented the highest dry matter content in tubers for cv. Kennebec and T2 and T3 treatments for cv. Spunta. A significant effect of the fertilization regime was also observed on the nutritional value of tubers and more specifically the protein, ash and fat content was increased by treatments T1 and T4, while carbohydrate content was also increased by T3 and T4 treatments for both varieties. Similarly, the total sugars, organic acids, β-carotene and lycopene content was increased in T3 treatment for the Spunta variety, while the antioxidant capacity showed a varied response depending on the fertilizer regime and the tested variety. In conclusion, the fertilization regime has a significant effect not only on the tuber yield but also on the quality of the final product and should be considered as an effective tool to increase the added value of potato crop.


Horticulturae ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 140
Author(s):  
Avela Sogoni ◽  
Muhali Jimoh ◽  
Learnmore Kambizi ◽  
Charles Laubscher

Climate change, expanding soil salinization, and the developing shortages of freshwater have negatively affected crop production around the world. Seawater and salinized lands represent potentially cultivable areas for edible salt-tolerant plants. In the present study, the effect of salinity stress on plant growth, mineral composition (macro-and micro-nutrients), and antioxidant activity in dune spinach (Tetragonia decumbens) were evaluated. The treatments consisted of three salt concentrations, 50, 100, and 200 mM, produced by adding NaCl to the nutrient solution. The control treatment had no NaCl but was sustained and irrigated by the nutrient solution. Results revealed a significant increase in total yield, branch production, and ferric reducing antioxidant power in plants irrigated with nutrient solution incorporated with 50 mM NaCl. Conversely, an increased level of salinity (200 mM) caused a decrease in chlorophyll content (SPAD), while the phenolic content, as well as nitrogen, phosphorus, and sodium, increased. The results of this study indicate that there is potential for brackish water cultivation of dune spinach for consumption, especially in provinces experiencing the adverse effect of drought and salinity, where seawater or underground saline water could be diluted and used as irrigation water in the production of this vegetable.


1975 ◽  
Vol 55 (4) ◽  
pp. 949-954 ◽  
Author(s):  
M. C. J. VAN ADRICHEM ◽  
J. N. TINGLE

The effects of spring-applied nitrogen (0, 56, 112 and 224 kg/ha) and phosphorus (0 and 27.4 kg/ha) on the dry matter (DM) yield and forage quality of successive harvests of meadow foxtail (Alopecurus pratensis L.) were investigated. Nitrogen increased DM yield, crude protein, Cu, K and Zn contents and decreased P, Ca, Mg and Mn contents. Application of P in combination with N increased K content in the first cut and arrested the decline of P content due to N application in all cuts. The levels of dry matter digestibility and Cu declined in successive cuts whereas Mn content increased. At low N rates, Ca and Mg contents increased as the season advanced.


2021 ◽  
Vol 52 (6) ◽  
pp. 1431-1440
Author(s):  
N. M. Abood ◽  
E. M. SHALAL ◽  
M. I. HAMDAN

Field experiment was carried out during the spring and fall seasons of 2019 at the Abu Ghraib Research Station of the Agricultural Research Office/ Ministry of Agriculture, was aimed to investigate the effect of plant growth inhibitors on growth and yield of several sorghum varieties .Randomized Complete Block Design within split plot arrangement with three replications was used. The main plot consists of three growth inhibitors (Cycocel, Ethiphon, and Mebiquat), which were added at stages six and eight leaf stage, in addition to the control treatment (distilled water only), the sub plot was included three cultivars (Mabrouk, Buhooth 70 and Giza 113). The results showed in both seasons significant interaction between cultivars and growth inhibitors in most of the studied traits. The plants of the variety Giza 113 sprayed with Ethiphon recorded the lowest period of reaching physiological maturity, the highest average dry matter yield, and the highest weight of 1000 grains (89.00 days, 17.32 ton ha-1, and 39.33 gm) respectively. The same variety recorded the highest content of chlorophyll in the leaves and the highest grain yield due to the effect of Mebiquat (49.50 spad, 3.93 ton ha-1. The cultivar Buhooth 70 with the effect of Cycocel achieved the highest average of dry matter yield of 33.27 ton ha-1.


2021 ◽  
Author(s):  
Eman G. Sayed ◽  
Mona A. Ouis

Abstract A new glass fertilizer (GF) system of main composition 60P2O5.30K2O.3.5ZnO. 3.5MnO.3Fe2O3 was developed in response to the needs of pea plants with bio-fertilizers (Rhizobium leguminosarum. Bv.vicieae, Bacillus megaterium var phosphaticum, Bacillus circulans).GF was prepared by the traditional melt quenching technique at 1150°C. Characterization of prepared system was done using FTIR spectra before and after immersion in a simulated actual agriculture medium like 2% citric acid and distilled water. During two winter seasons, two successful field experiments were conducted at Cairo University's Eastern Farm to determine the impact of chemical, glass, and bio-fertilizers on plant growth, yield attributes, and seed quality of pea plant. Control treatment were without any addition of recommended chemical fertilizers and other treatments were full dose of recommended chemical fertilizers (100%RDF), glass fertilizers at rate 60 kg fed− 1, Glass fertilizers at rate30 kg fed− 1, 50% RDF ,100%RDF + bio-fertilizers, Glass fertilizers at rate 60 kg fed− 1 + bio-fertilizers, glass fertilizers at rate 30 kg fed− 1+ bio-fertilizers, 50%RDF + bio-fertilizers. Plots received 60 kg fed− 1 glass fertilizers + bio-fertilizers show the highest significant increment in plant growth, number and weight of pods plant− 1, number of grain pods− 1, grain yield, biological yield, P%, k% in pea leaves and quality of pea seeds compared with plots without any addition (control) in both seasons.


2021 ◽  
Vol 13 (31) ◽  
pp. 81-86
Author(s):  
Rumen Bazitov ◽  
◽  
Stanimir Enchev ◽  

The aim of the present study is to determine the impact of the disturbed irrigation regime on the yield and the chemical composition of Sudan grass, grown as a second crop. To accomplish this goal, a trial was conducted in the experimental field of the Agricultural Institute - Stara Zagora with Sudan grass on meadow-cinnamon soil under irrigated conditions. The following variants have been studied: 1 - without irrigation (control variant); variant 2 - optimal irrigation, 75-80% of field capacity (FC); variant 3 - irrigation as in variant 2, but with the removal of the first watering; variant 4 - irrigation as variant 2, but with the removal of the second irrigation; variant 5 - irrigation as variant 2, but with the removal of the third watering. It was found that when growing Sudan grass as a second crop with optimal irrigation and disturbed irrigation regime done by canceling successive watering, the highest yield of dry biomass is obtained with optimal irrigation including three irrigations. Its yield increased by 24.2% compared to the control treatment. Irrigation of Sudan grass with only the second and the third irrigation in a row, without the first irrigation provided, leads to the lowest yield of dry biomass - 11290 kg / ha. Among the chemical composition indicators, the most significant change is observed in the content of the crude fat, followed by that of the crude fiber and crude protein, depending on the method of growing Sudan grass (with or without irrigation).


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2204 ◽  
Author(s):  
Spyridon A. Petropoulos ◽  
Ângela Fernandes ◽  
Maria Ines Dias ◽  
Carla Pereira ◽  
Ricardo C. Calhelha ◽  
...  

The aim of this report was to study the effect of salinity (control: 2dS/m, S1: 4 dS/m and S2: 6 dS/m) and harvest time (first harvest on 9 May 2018 and second harvest on 19 April 2018) on the growth and the chemical composition of Centaurea raphanina subsp. mixta plants. The plants of the first harvest were used for the plant growth measurements (fresh weight and moisture content of leaves, rosette diameter, number and thickness of leaves), whereas those of the second harvest were not used for these measurements due to the flowering initiation, which made the leaves unmarketable due to their hard texture. The results of our study showed that C. raphanina subsp. mixta plants can be cultivated under mild salinity (S1 treatment) conditions without severe effects on plant growth and yield, since a more severe loss (27.5%) was observed for the S2 treatment. In addition, harvest time proved to be a cost-effective cultivation practice that allows to regulate the quality of the final product, either in edible form (first harvest) or for nutraceutical and pharmaceutical purposes as well as antimicrobial agents in food products. Therefore, the combination of these two agronomic factors showed interesting results in terms of the quality of the final product. In particular, high salinity (S2 treatment) improved the nutritional value by increasing the fat, proteins and carbohydrates contents in the first harvest, as well as the tocopherols and sugars contents (S1 and S2 treatments, respectively) in the second harvest. In addition, salinity and harvest time affected the oxalic acid content which was the lowest for the S2 treatment at the second harvest. Similarly, the richest fatty acid (α-linolenic acid) increased with increasing salinity at the first harvest. Salinity and harvest time also affected the antimicrobial properties, especially against Staphylococcus aureus, Bacillus cereus and Trichoderma viride, where the extracts from the S1 and S2 treatments showed high effectiveness. In contrast, the highest amounts of flavanones (pinocembrin derivatives) were detected in the control treatment (second harvest), which was also reflected to the highest antioxidant activity (TBARS) for the same treatment. In conclusion, C. raphanina subsp. mixta plants seem to be tolerant to medium salinity stress (S1 treatment) since plant growth was not severely impaired, while salinity and harvesting time affected the nutritional value (fat, proteins, and carbohydrates) and the chemical composition (tocopherols, sugars, oxalic acid, fatty acids), as well as the bioactive properties (cytotoxicity and antimicrobial properties) of the final product.


2017 ◽  
Vol 48 (5) ◽  
Author(s):  
Khierallah & Al-Obaidy

This research was conducted in order to study the effect of explant type and some plant growth regulators on culture initiation of Stevia rebaudiana Bertoni in vitro. The experiments included surface sterilization and test two types of explants (shoot tips and stem nodes) and the impact of KIN and BA and IAA and IBA in the cultures initiation. Results revealed the efficiency of sodium hypochlorite (NaOCl) for disinfestation of explant at 0.050% concentration giving less contamination for shoot tips and stem nods (10% and 20% respectively). Results showed that shoot tips inoculated in MS medium plus KIN at 0.3 mg. L-1 was significantly increase the number of regenerated shoots as it produced 4.2 shoots per explant while medium without cytokinin (control) produced less number of shoots reached 1.4 shoots per explant. KIN treatment reduced shoots length as control treatment produced the highest length (6.74 cm).  The interaction between the explant type and BA concentration was significantly increase the number of regenerated shoots as shoot tips produced 3.6 shoots per explant in MS medium supplemented with 0.1 mg. L-1. BA treatment reduced shoots length as control treatment produced the highest length (6.74 cm). No positive effect was gain when auxins (IBA and IAA) were added in combination with cytokinin in culture medium. The above results can be adopted to established stevia in vitro culture successfully.


2009 ◽  
Vol 57 (3) ◽  
pp. 349-361
Author(s):  
F. Kurdali ◽  
M. Alshamma’a

The impact of five rates of phosphogypsum (PG) (0, 5, 10, 20 and 40 t/ha) on the growth, nodulation and N 2 fixation of dhaincha ( Sesbania aculeata Pers.) was evaluated in a pot experiment, using sorghum ( Sorghum bicolor L.) as a reference crop. N 2 fixation by the legume crop was measured using the 15 N isotope dilution method. The dry matter content of sorghum doubled when the soil was supplied with the lowest rate of PG (5 t/ha). For sesbania, the highest rate of PG (40 t/ha) was found to have a significant effect on the dry matter yield. PG had a beneficial effect on phosphorus (P) accumulation in both plant species, particularly in the nodules of sesbania. The beneficial effect of PG on nodulation and N 2 fixation was more pronounced than on the host plant growth. The highest value of N 2 fixation (67%) was obtained following the addition of 10 t PG/ha, whereas it was only 35% in the control treatment (PG0). The amount of fixed N 2 doubled when the soil was supplied with PG, particularly in the PG10 treatment. The concentration of fluoride (F − ) in the shoots of both plant species was less than 10 mg/kg. In conclusion, PG improved nodulation, N 2 fixation and P availability in the legume species S. aculeata with minimal soil N uptake.


Author(s):  
Abhay Kumar ◽  
Stephen Joseph ◽  
Ellen R. Graber ◽  
Sara Taherysoosavi ◽  
David R. G. Mitchell ◽  
...  

Abstract Background Fostering plant growth and improving agricultural yields by adding “macro”-sized biochar to soil has been extensively explored. However, the impact and mechanism of action of aqueous extracts of biochar applied as foliar fertilizer on plant growth and physiology is poorly understood, and was the objective of this study. Extracts were produced from biochars derived from pine wood:clay:sand (PCS-BC; 70:15:15) and wheat straw:bird manure (WB-BC; 50:50) and tested at two dilutions each. The plant influence of the biochar extracts and dilutions were compared with chemical fertilizer made up to the same minor trace element compositions as the applied extracts and a control treatment consisting of only deionized water. Results The WB-BC extract was more alkaline than the PCS-BC extract and exhibited higher electrical conductivity values. Similar to the biochars from which they were derived, the WB-BC extract had higher concentrations of dissolved mineral elements and organic matter than the PCS-BC extract. Despite major differences in chemical composition between the PCS-BC and WB-BC extracts, there was virtually no difference in plant performance between them at any chosen dilution. Foliar application of PCS25, WB50, and WB100 led to a significant increase in the plant fresh biomass in comparison to their corresponding chemical fertilizer and to deionized water. Plant growth parameters including number of leaves and chlorophyll contents in plants treated with biochar extract foliar sprays were significantly higher than in all the other treatments. Electron microscopy and spectroscopy studies showed the deposition of macro- and nanoscale organomineral particles and agglomerates on leaf surfaces of the examined PCS25-treated plant. Detailed study suggests that carbon nanomaterials and TiO2 or Si-rich nanoscale organomineral complexes or aluminosilicate compounds from biochar extract were main contributors to increased plant growth and improved plant performance. Conclusion These results suggest that biochar extracts have the potential to be used as nanofertilizer foliar sprays for enhancing plant growth and yield.


Sign in / Sign up

Export Citation Format

Share Document