Growth, nodulation and N 2 fixation of Sesbania aculeata grown on soil amended with phosphogypsum

2009 ◽  
Vol 57 (3) ◽  
pp. 349-361
Author(s):  
F. Kurdali ◽  
M. Alshamma’a

The impact of five rates of phosphogypsum (PG) (0, 5, 10, 20 and 40 t/ha) on the growth, nodulation and N 2 fixation of dhaincha ( Sesbania aculeata Pers.) was evaluated in a pot experiment, using sorghum ( Sorghum bicolor L.) as a reference crop. N 2 fixation by the legume crop was measured using the 15 N isotope dilution method. The dry matter content of sorghum doubled when the soil was supplied with the lowest rate of PG (5 t/ha). For sesbania, the highest rate of PG (40 t/ha) was found to have a significant effect on the dry matter yield. PG had a beneficial effect on phosphorus (P) accumulation in both plant species, particularly in the nodules of sesbania. The beneficial effect of PG on nodulation and N 2 fixation was more pronounced than on the host plant growth. The highest value of N 2 fixation (67%) was obtained following the addition of 10 t PG/ha, whereas it was only 35% in the control treatment (PG0). The amount of fixed N 2 doubled when the soil was supplied with PG, particularly in the PG10 treatment. The concentration of fluoride (F − ) in the shoots of both plant species was less than 10 mg/kg. In conclusion, PG improved nodulation, N 2 fixation and P availability in the legume species S. aculeata with minimal soil N uptake.

Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 474 ◽  
Author(s):  
Spyridon A. Petropoulos ◽  
Ângela Fernandes ◽  
Nikolaos Polyzos ◽  
Vasileios Antoniadis ◽  
Lillian Barros ◽  
...  

Potato cultivation is quite demanding in inorganic nutrients and adequate fertilization is a key factor for maximizing yield and producing tubers of high quality. In the present study, a field experiment was carried out to evaluate the effect of various forms of fertilization on crop performance and the nutritional value and chemical composition of two potato varieties (cv. Spunta and cv. Kennebec). For this purpose, five different fertilizer treatments were applied namely: control (C), standard fertilizer (T1), standard fertilizer + zeolite (T2), manure (T3) and slow release nitrogen fertilizer (T4). According to the results, it was observed that slow release treatment (T4) achieved the highest yield for both varieties, while the control treatment presented significantly lower yield compared to the studied fertilization regimes. The dry matter of leaves and shoots was higher in T1 treatment for cv. Kennebec and in T2 and T4 treatments for cv. Spunta, whereas the control treatment presented the highest dry matter content in tubers for cv. Kennebec and T2 and T3 treatments for cv. Spunta. A significant effect of the fertilization regime was also observed on the nutritional value of tubers and more specifically the protein, ash and fat content was increased by treatments T1 and T4, while carbohydrate content was also increased by T3 and T4 treatments for both varieties. Similarly, the total sugars, organic acids, β-carotene and lycopene content was increased in T3 treatment for the Spunta variety, while the antioxidant capacity showed a varied response depending on the fertilizer regime and the tested variety. In conclusion, the fertilization regime has a significant effect not only on the tuber yield but also on the quality of the final product and should be considered as an effective tool to increase the added value of potato crop.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 560
Author(s):  
Luigi Formisano ◽  
Michele Ciriello ◽  
Christophe El-Nakhel ◽  
Marios C. Kyriacou ◽  
Youssef Rouphael

In the Italian culinary tradition, young and tender leaves of Genovese basil (Ocimum basilicum L.) are used to prepare pesto sauce, a tasty condiment that attracts the interest of the food processing industry. Like other leafy or aromatic vegetables, basil is harvested more than once during the crop cycle to maximize yield. However, the mechanical stress induced by successive cuts can affect crucial parameters associated with pesto processing (leaf/stem ratio, stem diameter, and dry matter). Our research accordingly aimed to evaluate the impact of successive harvests on three field-grown Genovese basil cultivars (“Aroma 2”, “Eleonora” and “Italiano Classico”) in terms of production, physiological behavior, and technological parameters. Between the first and second harvest, marketable fresh yield and shoot dry biomass increased by 148.4% and 172.9%, respectively; by contrast, the leaf-to-stem ratio decreased by 22.5%, while the dry matter content was unchanged. The increased fresh yield and shoot dry biomass at the second harvest derived from improved photosynthetic efficiency, which enabled higher net CO2 assimilation, Fv/Fm and transpiration as well as reduced stomatal resistance. Our findings suggest that, under the Mediterranean environment, “Italiano Classico” carries superior productive performance and optimal technological characteristics in line with industrial requirements. These promising results warrant further investigation of the impact successive harvests may have on the qualitative components of high-yielding basil genotypes with respect to consumer expectations of the final product.


2013 ◽  
Vol 21 (1-2) ◽  
pp. 57-63 ◽  
Author(s):  
MHA Rashid

An experiment was conducted at the Horticulture Farm of the Bangladesh Agricultural University, Mymensingh to evaluate the effects of sulphur and GA3 on the growth and yield performance of onion cv. BARI Peaj-1. The experiment included four levels of sulphur viz., 0 (control), 15, 30 and 45 kg/ha and four concentrations of GA3 viz., 0 (control), 50, 75, 100 ppm. The experimental findings revealed that sulphur and GA3 had significant influence on plant height, number of leaves per plant, bulb diameter and length, individual bulb weight, splitted and rotten bulb, bulb dry matter content and bulb yield. The highest bulb yield (13.85 t/ha) was recorded from 30 kg S/ha, while the lowest bulb yield (11.20 t/ha) was obtained from control. Most of the parameters showed increasing trend with the higher concentration of GA3. Application of GA3 @ 100 ppm gave the maximum bulb yield (15.23 t/ha), while the minimum value (10.10 t/ha) was observed from control. Almost all the parameters were significantly influenced by combined treatments of sulphur and GA3 except bulb length of onion. The maximum bulb dry matter content (13.50%) and bulb yield (17.10 t/ha) were produced from the application of sulphur @ 30 kg/ha with 100ppm GA3, while the minimum bulb dry matter content (9.23%) and bulb yield (9.33 t/ha) were recorded from control treatment of sulphur with GA3.DOI: http://dx.doi.org/10.3329/pa.v21i1-2.16749 Progress. Agric. 21(1 & 2): 57 - 63, 2010


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2411
Author(s):  
Hamada E. Ali ◽  
Solveig Franziska Bucher

Land-use changes have huge impacts on natural vegetation, especially megaprojects, as the vegetation layer is destroyed in the course of construction works affecting the plant community composition and functionality. This large-scale disturbance might be a gateway for the establishment of invasive plant species, which can outcompete the natural flora. In contrast, species occurring in the area before the construction are not able to re-establish. In this study, we analyzed the impact of a pipeline construction on a wetland nature reserve located in northern Egypt. Therefore, we analyzed the plant species occurrence and abundance and measured each plant species’ traits before the construction in 2017 as well as on multiple occasions up to 2 years after the construction had finished on altogether five sampling events. We found that the construction activity led to the establishment of an invasive species which previously did not occur in the area, namely, Imperata cylindrica, whereas five species (Ipomoea carnea, Pluchea dioscoridis, Polygonum equisetiforme, Tamarix nilotica, and Typha domingensis) could not re-establish after the disturbance. The functionality of ecosystems assessed via the analysis of plant functional traits (plant height, specific leaf area, and leaf dry matter content) changed within species over all sampling events and within the community showing a tendency to approximate pre-construction values. Functional dispersion and Rao’s quadratic diversity were higher after the megaproject than before. These findings are important to capture possible re-establishment and recovery of natural vegetation after construction and raise awareness to the impact of megaprojects, especially in areas which are high priority for conservation.


2020 ◽  
Vol 22 (1) ◽  
pp. 39-45
Author(s):  
IJ Irin ◽  
PK Biswas ◽  
MJ Ullah ◽  
TS Roy ◽  
MA Khan

The field experiment was conducted at the Agronomy farm of Sher-e-Bangla Agricultural University to evaluate the impact of different kind of green manures on soil nutrient balance through adding biomass and N,P and K accumulation. Green manuring crops were incorporated after in situ cultivation and results showed that, the biomass incorporation increased the N production in soil. The biomass from Sesbania rostrata, Sesbania aculeata and Crotalaria juncea gave the higher dry matter and nutrient status. Incorporation of Sesbania rostrata and Sesbania aculeata added more organic matter and nitrogen to the soil after green manure incorporation than the prior soil. However, the improved soil quality was recorded with S. rostrata and S. aculeata followed by C. juncea and V. unguiculata incorporation as compared to control (no green manure) and other green manuring crops. The nutrient balance of soil after incorporation of different green manuring crops specially S. rostrata, S. aculeata and C. juncea showed positive balance of nutrients than other green manures. Bangladesh Agron. J. 2019, 22(1): 39-45


2010 ◽  
Vol 56 (No. 3) ◽  
pp. 85-91 ◽  
Author(s):  
Z. Strašil ◽  
J. Kára

This paper deals with the Reynoutria × bohemica and Reynoutria japonica under conditions of the Czech Republic. It evaluates the impact of soil, weather conditions and various terms of harvest (autumn, spring) on the yield, dry matter content, phytomass loss, ash content, and basic elements content change in plants. Heavy metals content was determined in soil where plants were grown and consequently in plants themselves. The average yield of dry matter at the fully closed stands of Reynoutria japonica were 9.06 t/ha in autumn, Reynoutria × bohemica from 13.23 to 21.41 t/ha, according to the site. The yield losses within the winter period were found on average 42% for Reynoutria japonica and 34% for Reynoutria × bohemica. The moisture decrease of Reynoutria japonica was found from 68% in the autumn to 24% in the spring, and of Reynoutria × bohemica from 67% to 23%, respectively. Decreased content of nitrogen, phosphorus, potassium, calcium, and magnesium in the knotweed phytomass was found during the latter (spring) harvest periods in comparison with the earlier harvest periods. Decreased elements content in phytomass during the latter harvest period (spring) increases the phytomass quality as a fuel from both aspects – technical and emissions generation. The ash content in plants varied according to the site, on average from 3.12% in Ruzyně to 4.6% in Chomutov. None of the heavy metals monitored in knotweed plants reached the maximum admissible values determined for the food or feed purposes in the Czech Republic. From the results of combustion experiments, it is evident that Reynoutria × bohemica is a good fuel. Energy sorrel shows the extreme CO concentration in flue gases in comparison with other monitored fuels. According to the ČSN EN 12809 (2001) standard it does not meet even the third class of requirements. On the contrary, knotweed and wood bark fulfill the requirements for the first class. The surprising fact is that both of these fuels show the lower level of CO emissions, than the wooden briquettes. Concentrations of nitrogen oxids are comparable with biofuels, except of wood, and probably are related to the nitrogen content in heating material.


2010 ◽  
Vol 26 (3-4) ◽  
pp. 167-177 ◽  
Author(s):  
M. Bojanic-Rasovic ◽  
S. Mirecki ◽  
N. Nikolic ◽  
R. Rasovic

The aim of paper was to examine the impact of the milk quality on yield of semi-hard naturally dried cheese, produced in cheese plant factory ZZ 'Cijevna' in Podgorica. Tests were conducted on 6 samples of bulk milk of cows and 6 productive batch of cheese. Chemical tests of the bulk milk have been done on the device MilcoScan 4000, and the determination content dry matter of whey and dry matter of cheese on the device MilcoScan FT 120. Theoretical yield of cheese was determined in two ways: 1) based on the content of fat and protein content in milk and 2) based on dry matter content of milk, dry matter of whey and dry matter of cheese. Actual yield of cheese is determined on the base of the total amount of cheese obtained after pressing and the amount of wasted milk. The average value for the fat content in the examined milk amounted to 3.79%, protein 3.24%, 4.26% lactose and dry matter content without fat 8.24%. The average value for the theoretical cheese yield by first method was 10.65% and by second method 9,30%. The average of actual cheese yield amounted to 11.26%. We found a very high positive correlation between content of fat in milk and actual cheese yield (0.929032) and mean positive correlation between content of protein in milk and actual cheese yield (0.613141), content of lactose in milk and actual cheese yield (0.651317) and between dry matter content in milk and actual cheese yield (0.651956).


2021 ◽  
Vol 42 (2) ◽  
pp. 845-860
Author(s):  
Maria Helena de Oliveira ◽  
◽  
Ciniro Costa ◽  
Cristiano Magalhães Pariz ◽  
Paulo Roberto de Lima Meirelles ◽  
...  

The objective of this study was to evaluate the yield and nutritional value of silage made from corn intercropped with marandu palisadegrass (Urochloa brizantha cv. Marandu) in an integrated crop-livestock system. The corn was harvested at different maturity stages and cutting heights and was processed or not before ensiling. The experimental design was a randomized block with four replications in a 2x2x2+1 factorial scheme. The treatments were composed of silage corn intercropped with marandu palisadegrass harvested at two cutting heights (20 or 45 cm) and two stages of maturity (1/4 of the kernel milk line or kernel physiological maturity) and subjected to two methods of processing (crushing or not crushing). A control treatment composed of conventionally grown corn silage was also included. The total dry matter yields of both crops did not differ significantly among treatments, demonstrating the viability of the intercropping system for both forage species. Although the dry matter content of the corn plants was higher at the time of ensiling, the fermentative and nutritive quality of the silages was not affected. Increasing the cutting height increased the grain content of the forage mass and also avoided harming the development of the intercropped grass. The silages from the physiological maturity treatment and from the processed treatment had the best quality.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 991 ◽  
Author(s):  
Geshere Abdisa Gurmesa ◽  
Xiankai Lu ◽  
Per Gundersen ◽  
Qinggong Mao ◽  
Yunting Fang ◽  
...  

Differences in nitrogen (N) acquisition patterns between plant species are often reflected in the natural 15N isotope ratios (δ15N) of the plant tissues, however, such differences are poorly understood for co-occurring plants in tropical and subtropical forests. To evaluate species variation in N acquisition traits, we measured leaf N concentration (%N) and δ15N in tree and understory plant species under ambient N deposition (control) and after a decade of N addition at 50 kg N ha−1 yr−1 (N-plots) in an old-growth subtropical forest in southern China. We also measured changes in leaf δ15N after one-year of 15N addition in both the control and N-plots. The results show consistent significant species variation in leaf %N in both control and N-plots, but decadal N addition did not significantly affect leaf %N. Leaf δ15N values were also significantly different among the plant species both in tree and understory layers, and both in control and N-plots, suggesting differences in N acquisition strategies such as variation in N sources and dominant forms of N uptake and dependence on mycorrhizal associations among the co-occurring plant species. Significant differences between the plant species (in both control and N-plots) in changes in leaf δ15N after 15N addition were observed only in the understory plants, indicating difference in access (or use) of deposited N among the plants. Decadal N addition had species-dependent effects on leaf δ15N, suggesting the N acquisition patterns of these plant species are differently affected by N deposition. These results suggest that co-occurring plants in N-rich and subtropical forests vary in their N acquisition traits; these differences need to be accounted for when evaluating the impact of N deposition on N cycling in these ecosystems.


Foods ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 685 ◽  
Author(s):  
Yue He ◽  
Youn Young Shim ◽  
Rana Mustafa ◽  
Venkatesh Meda ◽  
Martin J.T. Reaney

Aquafaba (AQ), a viscous by-product solution produced during cooking chickpea or other legumes in water, is increasingly being used as an egg replacement due to its ability to form foams and emulsions. The objectives of our work were to select a chickpea cultivar that produces AQ with superior emulsion properties, and to investigate the impact of chickpea seed physicochemical properties and hydration kinetics on the properties of AQ-based emulsions. AQ from a Kabuli type chickpea cultivar (CDC Leader) had the greatest emulsion capacity (1.10 ± 0.04 m2/g) and stability (71.9 ± 0.8%). There were no correlations observed between AQ emulsion properties and chickpea seed proximate compositions. Meanwhile, AQ emulsion properties were negatively correlated with AQ yield and moisture content, indicating that AQ with higher dry-matter content displayed better emulsion properties. In conclusion, the emulsification properties of aquafaba are greatly influenced by the chickpea genotype, and AQ from the CDC Leader chickpea produced the most stable food oil emulsions.


Sign in / Sign up

Export Citation Format

Share Document