scholarly journals Short-Term Responses to Salinity of Soybean and Chenopodium album Grown in Single and Mixed-Species Hydroponic Systems

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1481
Author(s):  
Aurora Ghirardelli ◽  
Michela Schiavon ◽  
Giuseppe Zanin ◽  
Piotr Ostapczuk ◽  
Roberta Masin

Weeds account for losses in crop yields, and this event might be exacerbated by salinity. Therefore, we investigated the responses of Chenopodium album L. and soybean (Glycine max (L.) Merr.) to salt stress, as well as interferences between species. Ten-day old plants were grown for 1 week in a single- or mixed-species set-up, either with or without 100 mM of NaCl. C. album reduced the biomass of soybean similarly to salt stress, while its growth was unaffected under any condition. C. album decreased the crop protein content when salinity was applied. This effect was ascribed to altered protein metabolism and/or N usage to produce other N metabolites, including osmolytes. The two species did not reciprocally affect the capacity to accumulate Na+, but the weed contained two-fold more Na+ in the leaves. Elevated initial K+ concentration and high K+ delivery to the shoot likely explained the better acclimation of C. album to salinity. C. album produced more phenolics and proline and exhibited greater antioxidant activity, but low lipid peroxidation, in the mixed set-up under salinity. Thus, it is possible that the weed could become more resilient to salinity when growing in a soybean field. In the long term, this might cause significant losses in soybean productivity as expected by the dramatic decline in crop protein content.

Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiang Zhang ◽  
Yan Long ◽  
Jingjing Huang ◽  
Jixing Xia

Abstract Background Salt stress threatens crop yields all over the world. Many NAC transcription factors have been reported to be involved in different abiotic stress responses, but it remains unclear how loss of these transcription factors alters the transcriptomes of plants. Previous reports have demonstrated that overexpression of OsNAC45 enhances salt and drought tolerance in rice, and that OsNAC45 may regulate the expression of two specific genes, OsPM1 and OsLEA3–1. Results Here, we found that ABA repressed, and NaCl promoted, the expression of OsNAC45 in roots. Immunostaining showed that OsNAC45 was localized in all root cells and was mainly expressed in the stele. Loss of OsNAC45 decreased the sensitivity of rice plants to ABA and over-expressing this gene had the opposite effect, which demonstrated that OsNAC45 played an important role during ABA signal responses. Knockout of OsNAC45 also resulted in more ROS accumulation in roots and increased sensitivity of rice to salt stress. Transcriptome sequencing assay found that thousands of genes were differently expressed in OsNAC45-knockout plants. Most of the down-regulated genes participated in plant stress responses. Quantitative real time RT-PCR suggested that seven genes may be regulated by OsNAC45 including OsCYP89G1, OsDREB1F, OsEREBP2, OsERF104, OsPM1, OsSAMDC2, and OsSIK1. Conclusions These results indicate that OsNAC45 plays vital roles in ABA signal responses and salt tolerance in rice. Further characterization of this gene may help us understand ABA signal pathway and breed rice plants that are more tolerant to salt stress.


Author(s):  
Abdul Ganiy O. Raji ◽  
John Alaba Victor Famurewa

Soybean protein is highly rich in the essential amino acid needed by human body. In the developing countries, its use will be more generally acceptable when converted to flour like wheat. This work focused on establishing the optimum conditions of some physical characteristics of soybean for high quality and acceptable soy flour. The characteristics studied for soybean samples subjected to heat treatment of boiling and oven drying were the effect moisture content (MC) and the hull thickness on the quality of the flours. Ten samples of Tax 1485 at different moisture levels ranging from 20.6% to 8.6% and five varieties (Tax 1440-1E, Tax 1740, Tax 1485, Tax 1456 and Tax 1448-2E) obtained from International Institute for Tropical Agriculture (IITA), having different hull thicknesses were used. Soybean with mixed varieties commonly found in the open markets was also used to compare the effects of MC on the studied parameters. Flours obtained from the samples milled in an attrition mill were subjected to proximate, sieve and organoleptic evaluations. The hull thickness was found to have no correlation with protein retention, acceptability and flour yield, but moisture content has a very significant effect on the qualities. Between moisture content of 20.6% and 8.6%, protein and acceptability reduced from 40.0% to 27.7% and 4.3 to 2.2 respectively while yield increased from 0.9% to 5.8%. Though protein was reducing with reduced MC, there was no significant difference (p<0.05) in protein retention between MC of 20.6% and 10.1% but it became significant at 9.4%. There was no significant difference in acceptability from 13.6% to 8.6% MC and between 8.9% and 11.0% MC for flour yield. Both Tax 1485 and mixed varieties followed the same trend only that they have different absolute values. The mixed varieties however had no significant difference in protein content between 19.8% and 10.2% MC. These results, therefore established that to obtain acceptable soyflour of high flour yield and protein content, moisture content of soybean after processing should be about 10% (dry basis).


2021 ◽  
Author(s):  
Julio Armando Massange-Sánchez ◽  
Carla Vanessa Sánchez-Hernández ◽  
Rosalba Mireya Hernández-Herrera ◽  
Paola Andrea Palmeros-Suárez

Salinity is one of the most severe environmental problems worldwide and affects plant growth, reproduction, and crop yields by inducing physiological and biochemical changes due to osmotic and ionic shifts in plant cells. One of the principal modifications caused by osmotic stress is the accumulation of reactive oxygen species (ROS), which cause membrane damage and alter proteins, DNA structures, and photosynthetic processes. In response, plants increase their arsenal of antioxidant compounds, such as ROS scavenging enzymes and nonenzymatic elements like ascorbate, glutathione, flavonoids, tocopherols, and carotenoids, and their rates of osmolyte synthesis to conserve ion homeostasis and manage salt stress. This chapter describes the principal biochemical mechanisms that are employed by plants to survive under salt-stress conditions, including the most recent research regarding plant tolerance, and suggests strategies to produce valuable crops that are able to deal with soil salinity.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1755
Author(s):  
Roberto D’Amato ◽  
Daniele Del Buono

Salinity is considered among the abiotic stresses most impacting agriculture for its ability to interfere with crop development and quality. For this reason, practices and innovations that could contain the deleterious effects of such stress are of pivotal importance for maintaining acceptable crop yields. In this context, this work has concerned the study of severe salt stress (100 mM NaCl) on maize seedlings and the effects of a plant biostimulant (Megafol–Meg) in helping plants to cope with this adversity. Biomass production, pigments, the content Na+ and K+, the accumulation of hydrogen peroxide (H2O2) and lipid peroxidation products (MDA), total phenolic compounds (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) were investigated in control samples, in samples treated with NaCl alone, and in samples treated with NaCl in combination with the biostimulant. The results showed that the biostimulant significantly mitigated the impact of the salt stress on shoot length and fresh weight, on chlorophyll and carotenoid contents, and reduced the amount of Na+ taken up by the species. Regarding the oxidative status, the biostimulated samples revealed lower amounts of H2O2 and MDA, while maize seedlings grown with NaCl alone exhibited the highest increases in the TPC, ABTS, and FRAP. The explanation for these effects is provided by highlighting the effectiveness of the biostimulant in avoiding Na+ accumulation, which resulted in a lower content of H2O2, MDA, TPC, and antioxidant activity.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 843 ◽  
Author(s):  
Xiaoyuan Peng ◽  
Dafu Yu ◽  
Junxin Yan ◽  
Na Zhang ◽  
Jixiang Lin ◽  
...  

Ryegrass has a relatively high salt tolerance and is considered to be a promising species for both foraging and turf purposes in salt-affected soils in China. While annual ryegrass and perennial ryegrass are two different species, they have similar genomes. However, little is known about their physiological and molecular response mechanisms to salinity stress. Here, biomass, chlorophyll fluorescence, and inorganic ion and organic solute content were measured. 2-DE-based proteomic technology was then used to identify the differentially expressed proteins in the salt-treated seedlings. The results showed that salt stress reduced growth and photosynthesis in the seedlings of both species, but much more so in annual ryegrass. With increasing salinity, the Na+ concentration increased while the K+ concentration decreased in both species, and the sugars and proline increased as the primary organic solutes used to cope with osmotic stress. Additionally, proteomic analysis revealed 33 and 37 differentially expressed proteins in annual and perennial ryegrass, respectively. Most of the identified proteins were involved in carbohydrate and energy metabolism, photosynthesis, genetic information processes, amino acid metabolism, stress defense, and protein synthesis and folding. The results suggest that the two-ryegrass species had different physiological and proteomic responses. These findings can provide new insights into physiological mechanisms by which ryegrass species respond to salt stress.


2020 ◽  
Vol 48 (2) ◽  
pp. 799-813
Author(s):  
Ioanna KAKABOUKI ◽  
Antigolena FOLINA ◽  
Charikleia ZISI ◽  
Stella KARYDOGIANNI

Soybean (Glycine max L.) constitutes a crop that is currently of interest both for its nutritional properties in humans and animals and for its contribution to soil nitrogen. It belongs to legumes, that means that it can take N2 and channel it to the soil, to be assimilable from plants. In addition, its high oil and protein content makes it important because of its nutritional properties. Moreover, soybean is a crop that has a major impact on nitrogen indicators. In this study, set up two same experiments in 2018-2019, in Western Greece. There were identified the effects of different fertilizer application (Control, N80, N100, N120), and different tillage (conventional tillage (CT), no tillage (NT)), on soil (organic matter, root density, no nodules/soil) and in agronomic (LAI, height, N% in upper parts, Yield, N% in seeds, N uptake in upper parts, N uptake in seed, N total uptake) characteristics. As well as in nitrogen indicators (nitrogen use efficiency, nitrogen harvest index, nitrogen agronomic efficiency, effects of absorption, effects of uptake). Soil properties were affected mainly by the tillage. However agronomic characteristics presented more differences between the different fertilizer application and finally the indicators were affected on both the parameters.


2015 ◽  
Vol 48 (4) ◽  
pp. 39-50 ◽  
Author(s):  
K.M. Saad-Allah

AbstractSix varieties of soybean (Glycine max L.) plants were grown for 30 days under three levels of sea salt salinity (0.0, 8.0 and 16.0 mS/cm2) for studying the effect of sea salt on uptake of nitrate and response of the antioxidant system for these salinity doses. Salt treatments resulted in a gradual decline in nitrate uptake by increasing sea salt concentration, which mean that this will bring negative consequences on nitrogen assimilation. However, salt treatments induced the accumulation of hydrogen peroxide and glycinebetaine in the leaves of all soybean verities as an adaptive strategy to cope with salt stress. On the other hand, there was a differential response in phenolic compounds among soybean verities as a function of salt concentration and the studied variety, which means there has a decline in phenolics under salt stress in the varieties Crawford, G21, G22 and G83, but in contrary in G35 and G82, phenolics has accumulated in response to salinity. Isozymes electrophoretic banding showed changes in peroxidase activity with sea salt, however superoxide dismutase showed stability in number and intensity of bands with salt treatments. Esterase enzyme was more sensitive to salinity and showed a gradual decline in activity by increasing salt concentration.


2004 ◽  
Vol 52 (2) ◽  
pp. 165-172 ◽  
Author(s):  
L. Márton

The effect of rainfall quantity and distribution and of N, P, K, Ca and Mg fertilisation on the yields of rye, potato, winter wheat and triticale were evaluated in the 42 years of a long-term mineral fertilisation experiment [soil (acidic, sandy, brown forest) × fertilisation (N, P, K, Ca, Mg) × rainfall (quantity, distribution) × crop (rye, potato, winter wheat, triticale)] set up in 1962 under fragile agro-ecological conditions in the Nyírlugos-Nyírség region of Eastern Hungary. The soil had the following agrochemical characteristics: pH (H2O) 5.9, pH (KCl) 4.7, hydrolytic acidity 8.4, hy1 0.3, humus 0.7%, total N 34 mg kg-1, ammonium lactate (AL)-soluble P2O5 43 mg kg-1, AL-K2O 60 mg kg-1 in the ploughed layer. From 1962 to 1980 the experiment consisted of 2×16×4×4=512 plots and from 1980 of 32×4=128 plots in split-split-plot and factorial random block designs. The gross plot size was 10×5=50 m2. The average fertiliser rates in kg ha-1 year-1 were nitrogen 45, phosphorus 24 (P2O5), potassium 40 (K2O), magnesium 7.5 (MgO) until 1980 and nitrogen 75, phosphorus 90 (P2O5), potassium 90 (K2O), magnesium 140 (MgCO3) after 1980. The main results and conclusions were as follows: The rainfall quantities averaged over many years and in the experimental years, and during the growing season, averaged over many years and in the experimental years, were 567, 497, 509, 452 mm for rye and 586, 509, 518 and 467 mm for winter wheat. Rainfall deviations from the many years' average -3% and -13% in the experimental years and during the growing season for potato and 2% and -3% for triticale. During the vegetation period the relationships between rainfall quantity, NPKCaMg nutrition and yield could be characterised primarily by quadratic correlations. Maximum yields of 4.0 t ha-1 for rye, 21.0 t ha-1 for potato, 3.4 t ha-1 for winter wheat and 5.0-6.0 t ha-1 for triticale were recorded when the natural rainfall amounted to 430-500, 280-330, 449-495 and 550-600 mm, respectively. At values above and below these figures there was a considerable reduction in the yield. The results showed that the crop yields were strongly influenced (quadratic correlation) by interactions between N, P, K, Ca and Mg fertilisation and rainfall quantity and distribution.


Sign in / Sign up

Export Citation Format

Share Document