scholarly journals Suitability of Image Analysis in Evaluating Air and Water Permeability of Soil

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1883
Author(s):  
Maja Bryk ◽  
Beata Kołodziej

A comprehensive understanding of the water and air permeability of soil is necessary for modelling the transport properties which depend on soil structure. We aimed to evaluate the suitability of image analysis to estimate gas and liquid transport in soil using resin-impregnated soil blocks. The soil texture, TOC, density, porosity, air capacity (VV), air permeability (logAP), and the saturated hydraulic conductivity (logKS) of a Cambisol developed from loess were measured. To characterise the pores, using the soil structure images, we determined the macroporosity (AA), index of soil pore-network growth rate, percolation number (lognPER), length of pore path/unit area (PLA), and relative volume of pores overlapping top and/or bottom edge of the image (VTB). logKS and logAP related to morphometric parameters of soil structure derived from the image analysis. The main factor controlling the soil’s infiltration was the total volume of soil pores (VV and AA). AA, PLA, VTB, and lognPER were equally useful for characterising the soil pore system. These results will contribute to more accurate estimations of gas and liquid transport in soils and allow to obtain historical hydraulic properties and model long-term trends in the soil water regime based on the existing collections of thin sections and polished blocks.

Author(s):  
C. A. Callender ◽  
Wm. C. Dawson ◽  
J. J. Funk

The geometric structure of pore space in some carbonate rocks can be correlated with petrophysical measurements by quantitatively analyzing binaries generated from SEM images. Reservoirs with similar porosities can have markedly different permeabilities. Image analysis identifies which characteristics of a rock are responsible for the permeability differences. Imaging data can explain unusual fluid flow patterns which, in turn, can improve production simulation models.Analytical SchemeOur sample suite consists of 30 Middle East carbonates having porosities ranging from 21 to 28% and permeabilities from 92 to 2153 md. Engineering tests reveal the lack of a consistent (predictable) relationship between porosity and permeability (Fig. 1). Finely polished thin sections were studied petrographically to determine rock texture. The studied thin sections represent four petrographically distinct carbonate rock types ranging from compacted, poorly-sorted, dolomitized, intraclastic grainstones to well-sorted, foraminiferal,ooid, peloidal grainstones. The samples were analyzed for pore structure by a Tracor Northern 5500 IPP 5B/80 image analyzer and a 80386 microprocessor-based imaging system. Between 30 and 50 SEM-generated backscattered electron images (frames) were collected per thin section. Binaries were created from the gray level that represents the pore space. Calculated values were averaged and the data analyzed to determine which geological pore structure characteristics actually affect permeability.


1998 ◽  
Vol 46 (2) ◽  
pp. 177-180 ◽  
Author(s):  
Tamar Fisher ◽  
Tamar Berner ◽  
Adiv Gal ◽  
Zvy Dubinsky

A computerized image analysis package (ImagePro+) was evaluated as an alternative method for morphometric analysis of electron micrographs of microalgal cells. The morphometric analysis was demonstrated with micrographs of the marine alga Nannochloropsis sp. grown under high and low light intensity. We applied the ImagePro+ package to estimate the relative volume of an organelle based on the ratio of perimeters of the organelle and the cell. The measurements included the volumes of chloroplasts, mitochondria, nuclei, vacuoles, and accumulation bodies, all relative to cell volume. The length of thylakoids was measured using the same package. The results obtained by ImagePro+ were compared to those of the traditional manual and laborious method involving the superimposition of an array of short lines on the micrograph. A high correlation between the methods was found. The following correlations were found for chloroplast, nucleus, and accumulation bodies: 0.96, 0.92, and 0.75, respectively. The correlation between length of thylakoids (ImagePro+) and surface area of thylakoids (superimposition) was 0.82.


Soil Research ◽  
1991 ◽  
Vol 29 (6) ◽  
pp. 777 ◽  
Author(s):  
AJ Ringrose-Voase

Micromorphological observation can provide insights into soil structure and aid interpretation of soil behaviour. Undisturbed samples are taken in the field and impregnated. They are used to prepare thin sections or images of the macropore structure using fluorescent photography. Sections can also be obtained at macro, meso and submicroscopic scales. The various elements of soil structure observed micromorphologically can be classified into pore space, physical, distribution and orientation fabrics, and associated structures. Examples of the importance of features in each category are given. Image analysis, especially when computerized, provides a way of parameterizing micromorphological observations. To date it has been used primarily on images of macropore space at the meso and microscopic scales. Such images can be digitized and segmented to show pore space and solid. The pore space can be allocated to pore types. This aids the estimation of 3-D parameters from I-D and 2-D measurements made on the image using stereology. Various ways of using structural parameters to compare structures are discussed. Applications for micromorphological observations, especially when quantitative, include comparison of structures formed by different management techniques. Structural measurements can aid interpretation of soil behaviour as described by physical measurements. They also have a role in estimating the representative elementary volume, on which physical measurements should be made, and in calibrating field estimates of soil structure.


Observations by electron microscopy on thin sections of the metatarsal tendon of embryonic fowls show that in the 8-day embryo the earliest definable collagen fibrils of 80 Å in diameter are intimately associated with the cytoplasm of the compact, apparently syncytial, cells of which the tendon rudiment is composed. As development proceeds, some intracytoplasmic groups of fibrils are distinguishable, but intercellular spaces also develop and these gradually become filled with fibrils; finally, bundles are formed and lie packed between the adjacent cells. Soon the extracellular organization predominates until at 20days the average diameter of the fibrils is 400 Å and the normal 640 Å periodicity of collagen has been achieved. The morphological features demonstrated have been correlated with histochemical data, and the possible function of the various cellular components in the formation of the intercellular substance has been discussed. By the use of sections in which fibrils have been cut exactly transverse to the bundle axis it has been shown that each fibril is invested by interfibrillar material. As the diameter of the fibrils increases with age the relative volume of interfibrillar material within a bundle diminishes; it is therefore concluded that this material must contain either collagen or the necessary precursors in order to account for the enlargement of the fibrils. Thus the interfibrillar material is of fundamental importance to the formation and growth of the collagen fibrils.


2012 ◽  
pp. 105-110
Author(s):  
L. Pineda-Marín ◽  
M.C. Gutiérrez-Castorena ◽  
R. Anicua-Sánchez ◽  
L. Cajuste-Bontemps ◽  
E.V. Gutiérrez-Castorena
Keyword(s):  

2015 ◽  
Vol 4 (3) ◽  
pp. 15 ◽  
Author(s):  
Ulrich Kopke ◽  
Miriam Athmann ◽  
Eusun Han ◽  
Timo Kautz

<p>Depth and architecture of root systems play a prominent role in crop productivity under conditions of low water and nutrient availability. The subsoil contains high amounts of nutrients that may potentially serve for nutrient uptake by crops including finite resources such as phosphorus that have to be used in moderation to delay their exhaustion. Biopores are tubular shaped continuous soil pores formed by plant roots and earthworms. Taproot systems especially those of perennial legumes can make soil nutrients plant available from the solid phase and increase the density of vertical biopores in the subsoil thus making subsoil layers more accessible for succeeding crops. Density of larger sized biopores is further enhanced by increased abundance and activity of anecic earthworms resulting from soil rest and amount of provided feed. Nutrient rich drilospheres can provide a favorable environment for roots and nutrient uptake of subsequent crops. Future efficient nutrient management and crop rotation design in organic agriculture should entail these strategies of soil fertility building and biopore services in subsoil layers site specifically. Elements of these concepts are suggested to be used also in mainstream agriculture headlands, e.g. as ‘Ecological Focus Areas’, in order to improve soil structure as well as to establish a web of biodiversity while avoiding constraints for agricultural production.</p>


2009 ◽  
Vol 81 (1) ◽  
pp. 151-161 ◽  
Author(s):  
Luiz F. Pires ◽  
Klaus Reichardt ◽  
Miguel Cooper ◽  
Fabio A.M. Cássaro ◽  
Nivea M.P. Dias ◽  
...  

Soil pore structure characterization using 2-D image analysis constitutes a simple method to obtain essential information related to soil porosity and pore size distribution (PSD). Such information is important to infer on soil quality, which is related to soil structure and transport processes inside the soil. Most of the time soils are submitted to wetting and drying cycles (W-D), which can cause important changes in soils with damaged structures. This report uses 2-D image analysis to evaluate possible modifications induced by W-D cycles on the structure of damaged soil samples. Samples of three tropical soils (Geric Ferralsol, GF; Eutric Nitosol, EN; and Rhodic Ferralsol, RF) were submitted to three treatments: 0WD, the control treatment in which samples were not submitted to any W-D cycle; 3WD and 9WD with samples submitted to 3 and 9 consecutive W-D cycles, respectively. It was observed that W-D cycles produced significant changes in large irregular pores of the GF and RF soils, and in rounded pores of the EN soil. Nevertheless, important changes in smaller pores (35, 75, and 150 µm) were also observed for all soils. As an overall consideration, it can be said that the use of image analysis helped to explain important changes in soil pore systems (shape, number, and size distribution) as consequence of W-D cycles.


1988 ◽  
Vol 137 ◽  
Author(s):  
H. H. Patel ◽  
P. L. Pratt ◽  
L. J. Parrott

AbstractThe changes in porosity of OPC and an OPC-fly ash blended cement during hydration have been studied at water/solids ratios of 0.35, 0.47 and 0.59, cured for times of up to 1 year at 25°C. The porosity was measured indirectly by methanol exchange and methanol adsorption techniques and, directly, by quantitative image analysis using backscattered electron imaging in the scanning electron microscope. Measurements of porosity and of remaining anhydrous material by image analysis showed good correlation with indirect methods. Measurement of the diffusion of methanol and of the compressive strength were made in parallel with the determination of the porosity during hydration and attempts were made to relate the properties to the microstructure. For both binders the reduction of total porosity with increased reaction was small. The major change in pore structure was the subdivision of coarse pores by gel to form finer pores. Compressive strength and diffusion properties were dominated by the relative volume of coarse pores.


Sign in / Sign up

Export Citation Format

Share Document