scholarly journals Subsoil Melioration with Organic Material—Principle, Technology and Yield Effects

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1970
Author(s):  
Oliver Schmittmann ◽  
Andreas Christ ◽  
Peter Schulze Lammers

An increasing challenge for agriculture in times of climate change is to sustainably ensure or increase the yield capacity of crop production. Low-yielding sites are particularly at risk in this respect. One strategy to counteract is to promote the use of the subsoil. This article describes the technical procedure and development of an implement for stripe-wise subsoil melioration with application of compost in a layer of 30–60 cm. These stripes are each 30 cm wide and 70 cm apart. A technology has been developed for process, which allows the described procedure to be used over a large area. The melioration is carried out in one pass by an implement in an arrangement of 3 rows resulting in a working width of 3 m. A hopper on top of the implements frame includes an embedded hydraulic system to feed compost into the injection coulter. Results from 4-year field trials with standard crop rotations verify yield increases of up to 20% still 5 years after melioration. An overview of these trials and results will also be presented.

2020 ◽  
Author(s):  
Kurt-Christian Kersebaum ◽  
Susanne Schulz ◽  
Evelyn Wallor

<p>Climate change impact on crop production depends on the cultivated crop and its position within crop rotations and on site conditions, e.g. soils and hydrology, buffering adverse weather situations. We present a regional study across the federal state of Brandenburg/Germany based on gridded climate data and a digital soil map using the HERMES-to-Go model. The aim was to investigate defined crop rotations and common agricultural practices under current and future climate conditions regarding productivity and environmental effects. Two contrasting GCMs (HAD and MPI) were used to generate climate input for modelling for the RCPs 2.6 and 8.5.</p><p>5 different types of crop production were simulated by defining crop rotations over 4-5 years for soil quality rating groups. While one rotation is comprised by the most common crops, another rotation modifies the first one by introducing a legume followed by a more demanding crop. The third rotation intends to produce higher value crops, e.g. potatoes than the first one, while the fourth rotation has its focus on fodder grass and cereal production. Building on this the fifth rotation replaces the fodder grass by alfalfa. All rotations are simulated in shifted phases to ensure that each crop is simulated for each year.</p><p>Sowing, harvest and nitrogen fertilization were derived by algorithms based on soil and climate information to allow self-adaptation to changing climate conditions. The crop rotations are simulated under rainfed and irrigated conditions and with and without the implementation of cover crops to prevent winter fallow.</p><p>We used the digital soil map 1:300.000 for Brandenburg with 99 soil map units. Within the soil map unit, up to three dominant soil types were considered to achieve at least 65% coverage. 276 soil types are defined by their soil profiles including soil organic matter content and texture down to 2 meters. Groundwater levels are estimated using the depth of reduction horizons as constant values over the year, to consider capillary rise depending on soil texture and distance between the root zone and the groundwater table.</p><p>In total each climate scenario contains about 148.000 simulations of 30 years. Beside crop yields we analyse the outputs for trends in soil organic matter, groundwater recharge, nitrogen leaching and the effect on water and nitrogen management using algorithms for automatic management.</p><p>Results indicate that spring crops were more negatively affected by climate change than winter crops especially on soils with low water holding capacity. However, few areas with more loamy soils and potential contribution of capillary rise from a shallow groundwater even benefited from climate change. Irrigation in most cases improved crop yield especially for spring crops. However, further analysis is required to assess if irrigation gains an economic benefit for all crop rotations. Nitrogen leaching can be reduced by implementing winter cover crops. Soil organic matter is assessed to decline for most sites and rotations. Only the rotations with multiyear grass or alfalfa can keep the level, but not on all sites.</p>


2005 ◽  
Vol 85 (2) ◽  
pp. 345-357 ◽  
Author(s):  
A. Bootsma ◽  
S. Gameda ◽  
D. W. McKenney

In this paper, relationships between agroclimatic indices and average yields of grain corn (Zea mays L.), soybeans (Glycine max L. Merr.) and barley (Hordeum vulgare L.) in field trials conducted in eastern Canada are explored and then used to estimate potential impacts of climate change scenarios on anticipated average yields and total production of these commodities for the Atlantic region for the 2040 to 2069 period. Average yields of grain corn and soybeans were highly correlated (R2 = 0.86 and 0.74, respectively) with average available crop heat units (CHU), with yields increasing by about 0.006 t ha-1 CHU-1 for corn and 0.0013 t ha-1 CHU-1 for soybeans. The explained variance was not improved significantly when water deficit (DEFICIT) was included as an independent variable in regression. Correlations between average yields of barley and effective growing degree-days (EGDD) were low (R2 ≤ 0.26) and negative, i.e., there was a tendency for slightly lower yields at higher EGDD values. Including a second-order polynomial for DEFICIT in the regression increased the R2 to ≥ 0.58, indicating a tendency for lower barley yields in areas with high water deficits and with water surpluses. Based on a range of available heat units projected by multiple General Circulation Model (GCM) experiments, average yields achievable in field trials could increase by about 2.6 to 7.5 t ha-1 (40 to 115%) for corn, and by 0.6 to 1.5 t ha-1 (21 to 50%) for soybeans by 2040 to 2069, not including the direct effect of increased atmospheric CO2 concentrations, advances in plant breeding and crop production practices or changes in impacts of weeds, insects and diseases on yield. Anticipated reductions in barley yields are likely to be more than offset by the direct effect of increased CO2 concentrations. As a result of changes in potential yields, there will likely be significant shifts away from production of barley to high-energy and high-protein crops (corn and soybeans) that are better adapted to the warmer climate. However, barley and other small grain cereals will likely remain as important crops as they are very suited for rotation with potatoes. There is a need to evaluate the potential environmental impacts of these possible shifts in crop production, particularly with respect to soil erosion in the region. Key words: Crop heat units, growing degree-days, water deficits, crop yields, climate change, Atlantic region


2021 ◽  
Author(s):  
Matti Kummu ◽  
Matias Heino ◽  
Maija Taka ◽  
Olli Varis ◽  
Daniel Viviroli

<p>The majority of food production is based on agricultural practices developed for the stable Holocene climatic conditions, which now are under risk for rapid change due to climate change. Although various studies have assessed the potential changes in climatic conditions and their projected impacts on yields globally, there is no clear understanding on the climatic niche of the current food production. Nor, which areas are under risk of falling outside this niche.</p><p>In this study we aim first at defining the novel concept Safe Climatic Space (SCS) by using a combination of three key climatic parameters. SCS is defined here as the climate conditions to which current food production systems (here crop production and livestock production separately) are accustomed to, an analogue to Safe Operating Space (SOS) concepts such as Planetary Boundaries and human climate niche. We use a combination of selected key climatic factors to define the SCS through the Holdridge Life Zone (HLZ) concept. It allows us to first define the SCS based on three climatic factors (annual precipitation, biotemperature and aridity) and to identify which food production areas would stay within it under changed future climate conditions. </p><p>We show that a rapid and unhalted growth of GHG emissions (SSP5-8.5) could force 31% (25-37% with 5th-95th percentile confidence interval) of global food crop production and 34% (26-43%) of livestock production beyond the SCS by 2081-2100. Our results underpin the importance of committing to a low emission scenario (SSP1-2.6), whereupon the extent of food production facing unprecedented conditions would be a fraction: 8% (4-10%) for crop production and 4% (2-8%) for livestock production. The most vulnerable areas are the ones at risk of leaving SCS with low resilience to cope with the change, particularly South and Southeast Asia and Africa’s Sudano-Sahelian Zone. </p><p>Our findings reinforce the existing research in suggesting that climate change forces humanity into a new era of reduced validity of past experiences and dramatically increased uncertainties. Future solutions should be concentrated on actions that would both mitigate climate change as well as increase resilience in food systems and societies, increase the food production sustainability that respects key planetary boundaries, adapt to climate change by, for example, crop migration and foster local livelihoods especially in the most critical areas.</p>


2010 ◽  
Vol 148 (6) ◽  
pp. 639-656 ◽  
Author(s):  
M. TRNKA ◽  
J. EITZINGER ◽  
M. DUBROVSKÝ ◽  
D. SEMERÁDOVÁ ◽  
P. ŠTĚPÁNEK ◽  
...  

SUMMARYThe reality of climate change has rarely been questioned in Europe in the last few years as a consensus has emerged amongst a wide range of national to local environmental and resource policy makers and stakeholders that climate change has been sufficiently demonstrated in a number of sectors. A number of site-based studies evaluating change of attainable yields of various crops have been conducted in Central Europe, but studies that evaluate agroclimatic potential across more countries in the region are rare. Therefore, the main aim of the present study was to develop and test a technique for a comprehensive evaluation of agroclimatic conditions under expected climate conditions over all of Central Europe with a high spatial resolution in order to answer the question posed in the title of the paper ‘Is rainfed crop production in central Europe at risk?’ The domain covers the entire area of Central Europe between latitudes 45° and 51·5°N and longitudes 8° and 27°E, including at least part of the territories of Austria, the Czech Republic, Germany, Hungary, Poland, Romania, Slovakia, Switzerland and Ukraine. The study is based on a range of agroclimatic indices that are designed to capture complex relations existing between climate and crops (their development and/or production) as well as the agrosystems as a whole. They provide information about various aspects of crop production, but they are not meant to compete with other and sometimes more suitable tools (e.g. process-based crop models, soil workability models, etc.). Instead, the selected indices can be seen as complementary to crop modelling tools that describe aspects not fully addressed or covered by crop models for an overall assessment of crop production conditions. The set of indices includes: sum of effective global radiation, number of effective growing days, Huglin index, water balance during the period from April to June (AMJ) and during the summer (JJA), proportion of days suitable for harvesting of field crops in June and July, and proportion of days suitable for sowing in early spring as well as during the autumn. The study concluded that while the uncertainties about future climate change impacts remain, the increase in the mean production potential of the domain as a whole (expressed in terms of effective global radiation and number of effective growing days) is likely a result of climate change, while inter-annual yield variability and risk may also increase. However, this is not true for the Pannonian (the lowlands between the Alps, the Carpathian Mountains and the Dinaric Alps) and Mediterranean parts of the domain, where increases in the water deficit will further limit rainfed agriculture but will probably lead to an increase in irrigation agriculture if local water resources are dwindling. Increases in the severity of the 20-year drought deficit and more substantial water deficits during the critical part of the growing season are very likely over the central and western part of the domain. Similarly, the inter-annual variability of water balance is likely to increase over the domain. There is also a chance of conditions for sowing during spring deteriorating due to unfavourable weather, which might increase the preference given to winter crops. This is already likely due to their ability to withstand spring drought stress events. Harvesting conditions in June (when harvest of some crops might take place in the future) are not improving beyond the present level, making the planning of the effective harvest time more challenging. Based on the evidence provided by the present study, it could be concluded that rainfed agriculture might indeed face more climate-related risks, but the overall conditions will probably allow for acceptable yield levels in most seasons. However, the evidence also suggests that the risk of extremely unfavourable years, resulting in poor economic returns, is likely to increase.


2018 ◽  
Vol 6 (10) ◽  
pp. 194-201
Author(s):  
Mohammed D. Toungos

This study determines the efficacy of Sasakawa technology to maize yield improvement and meeting the demand of the populace in terms of food crop production at the time of unpredictable weather conditions in Mubi. The field trials were conducted during the 2017 cropping season at the teaching and research farm of the Faculty of Agriculture, Adamawa state University Mubi to evaluate the effect of Sasakawa Technology as a panacea to maize yield improvement and meeting the vagaries of climate change in Mubi. Mubi, located in the Northern Guinea Savannah of Nigeria. Mubi is situated between latitude 100 10’’ and 100 30’’ North of the Equator and between longitude 130 10 and 130 30’’ E of the Greenwich meridian and at an altitude of 696 m above mean sea level (MSL). Extra early white (EEW) variety of maize was obtained from Farm office of the University, were sown at three different sowing dates 19th July, 29th July and 8th August, 2018. There was a large yield difference between the Sasakawa Technology of maize production and local farmers’ output in Mubi, despite the limited opportunities to sustainability and increase in the productivity of the crop in order to adapt to vagaries of climate change. Yields recorded during the three sowing dates were 2,967kg/ha, 2,930kg/ha and 2,921kg/ha while on the neighboring farmer’s field was 1,897kg/ha. It indicated that, the Sasakawa technology used in terms of spacing of 25cm x 25cm between plants and 75cm x75cm between rows, single seed per stand and appropriate fertilizer application increased maize yield more than the neighboring farmers fields. The Sasakawa technology recorded mostly two cobs per stand, longer cobs mean lengths with maximum grain filled and the grains were significantly bigger when compared to the farmer’s fields. Even though some critics argue that, Sasakawa Global 2000 technology deals with high-external-input technologies (HEIT) which are too costly to some farmers, but the out – put out weights the input in terms of yields, economic returns and also sustained the vagaries of climatic effects due to timely sowing and maintenance of the Sasakawa technology techniques. To boost maize production in Mubi and at this time of unpredictable climate and its effects, the Sasakawa technology is recommended to be adopted by the farmers.


2019 ◽  
Vol 49 (1) ◽  
pp. 135-150
Author(s):  
Diane Negra

In this article I consider how registers of weather media carry/convey cultural information, specifically how texts about extreme weather articulate with investment in a supposed post-recession restored normality marked by the Irish government's commitment to deregulated transnational capitalism. I maintain that, in a process of cross-cultural remediation, sensationalist codes of US weather media that discursively manage awareness of systemic climate problems are just starting to infiltrate the Irish broadcasting environment. In early December 2015 RTÉ’s Teresa Mannion covered a strong gale, Storm Desmond, amidst inclement conditions in Salthill, Co Galway. Modelling the kind of ‘body at risk’ coverage consummately performed by US Weather Channel personnel, Mannion could barely speak over the lashing rain and strong winds in a dramatic broadcast that quickly became a viral video. This article analyses the fascination with Mannion's piece and its memetic, and attends to the nature of the pleasure taken in her on-camera discomfiture and the breach of gendered territory committed by Mannion at a time when national popular culture in Ireland is under increased obligation to identify and explain climate change-related extreme weather.


Author(s):  
Anna Langstroff ◽  
Marc C. Heuermann ◽  
Andreas Stahl ◽  
Astrid Junker

AbstractRising temperatures and changing precipitation patterns will affect agricultural production substantially, exposing crops to extended and more intense periods of stress. Therefore, breeding of varieties adapted to the constantly changing conditions is pivotal to enable a quantitatively and qualitatively adequate crop production despite the negative effects of climate change. As it is not yet possible to select for adaptation to future climate scenarios in the field, simulations of future conditions in controlled-environment (CE) phenotyping facilities contribute to the understanding of the plant response to special stress conditions and help breeders to select ideal genotypes which cope with future conditions. CE phenotyping facilities enable the collection of traits that are not easy to measure under field conditions and the assessment of a plant‘s phenotype under repeatable, clearly defined environmental conditions using automated, non-invasive, high-throughput methods. However, extrapolation and translation of results obtained under controlled environments to field environments is ambiguous. This review outlines the opportunities and challenges of phenotyping approaches under controlled environments complementary to conventional field trials. It gives an overview on general principles and introduces existing phenotyping facilities that take up the challenge of obtaining reliable and robust phenotypic data on climate response traits to support breeding of climate-adapted crops.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 295
Author(s):  
Yuan Gao ◽  
Anyu Zhang ◽  
Yaojie Yue ◽  
Jing’ai Wang ◽  
Peng Su

Suitable land is an important prerequisite for crop cultivation and, given the prospect of climate change, it is essential to assess such suitability to minimize crop production risks and to ensure food security. Although a variety of methods to assess the suitability are available, a comprehensive, objective, and large-scale screening of environmental variables that influence the results—and therefore their accuracy—of these methods has rarely been explored. An approach to the selection of such variables is proposed and the criteria established for large-scale assessment of land, based on big data, for its suitability to maize (Zea mays L.) cultivation as a case study. The predicted suitability matched the past distribution of maize with an overall accuracy of 79% and a Kappa coefficient of 0.72. The land suitability for maize is likely to decrease markedly at low latitudes and even at mid latitudes. The total area suitable for maize globally and in most major maize-producing countries will decrease, the decrease being particularly steep in those regions optimally suited for maize at present. Compared with earlier research, the method proposed in the present paper is simple yet objective, comprehensive, and reliable for large-scale assessment. The findings of the study highlight the necessity of adopting relevant strategies to cope with the adverse impacts of climate change.


GEOMATICA ◽  
2019 ◽  
Vol 73 (4) ◽  
pp. 93-106
Author(s):  
Colin Minielly ◽  
O. Clement Adebooye ◽  
P.B. Irenikatche Akponikpe ◽  
Durodoluwa J. Oyedele ◽  
Dirk de Boer ◽  
...  

Climate change and food security are complex global issues that require multidisciplinary approaches to resolve. A nexus exists between both issues, especially in developing countries, but little prior research has successfully bridged the divide. Existing resolutions to climate change and food security are expensive and resource demanding. Climate modelling is at the forefront of climate change literature and development planning, whereas agronomy research is leading food security plans. The Benin Republic and Nigeria have grown and developed in recent years but may not have all the tools required to implement and sustain long-term food security in the face of climate change. The objective of this paper is to describe the development and outputs of a new model that bridges climate change and food security. Data from the Intergovernmental Panel on Climate Change’s 5th Regional Assessment (IPCC AR5) were combined with a biodiversity database to develop the model to derive these outputs. The model was used to demonstrate what potential impacts climate change will have on the regional food security by incorporating agronomic data from four local underutilized indigenous vegetables (Amaranthus cruentus L., Solanum macrocarpon L., Telfairia occidentalis Hook f., and Ocimum gratissimum L.). The model shows that, by 2099, there is significant uncertainty within the optimal recommendations that originated from the MicroVeg project. This suggests that MicroVeg will not have long-term success for food security unless additional options (e.g., new field trials, shifts in vegetable grown) are considered, creating the need for need for more dissemination tools.


2016 ◽  
Vol 5 (2) ◽  
pp. 41 ◽  
Author(s):  
Emmanuel Nyadzi

<p>The study examines how farmers’ observations of climate variability and change correspond with 42 years (1970-2011) meteorological data of temperature and rainfall. It shows how farmers in the Northern Region of Ghana adjust to the changing climate and explore the various obstacles that hinder the implementation of their adaptation strategies. With the help of an extension officer, 200 farmers from 20 communities were randomly selected based on their farming records. Temperatures over the last four decades (1970-2009) increased at a rate of 0.04 (± 0.41) ˚C and 0.3(± 0.13)˚C from 2010-2011 which is consistent to the farmers (82.5%) observations. Rainfall within the districts are characterised by inter-annual and monthly variability. It experienced an increased rate of 0.66 (± 8.30) mm from 1970-2009, which was inconsistent with the farmers (81.5%) observation. It however decreased from 2010-2011 at a huge rate of -22.49 (±15.90) mm which probably was the reason majority of the respondents claim rainfall was decreasing. Only 64.5% of the respondents had adjusted their farming activities because of climate variability and change. They apply fertilizers and pesticides, practice soil and water conservation, and irrigation for communities close to dams. Respondents desire to continue their current adaptation methods but may in the future consider changing crop variety, water-harvesting techniques, change crop production to livestock keeping, and possibly migrate to urban centers. Lack of climate change education, low access to credit and agricultural inputs are some militating factors crippling the farmers’ effort to adapt to climate change.</p>


Sign in / Sign up

Export Citation Format

Share Document