scholarly journals Breeding for Resilience to Water Deficit and Its Predicted Effect on Forage Mass in Tall Fescue

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2094
Author(s):  
Blair L. Waldron ◽  
Kevin B. Jensen ◽  
Michael D. Peel ◽  
Valentin D. Picasso

Resilience is increasingly part of the discussion on climate change, yet there is a lack of breeding for resilience per se. This experiment examined the genetic parameters of a novel, direct measure of resilience to water deficit in tall fescue (Lolium arundinaceum (Schreb.) Darbysh.). Heritability, genetic correlations, and predicted gain from selection were estimated for average productivity, resilience, and stability based on forage mass of a tall fescue half-sib population grown under a line-source irrigation system with five different water levels (WL). Resilience was both measurable and moderately heritable (h2 = 0.43), with gains of 2.7 to 3.1% per cycle of selection predicted. Furthermore, resilience was not correlated with average response over environments and negatively correlated with stability, indicating that it was not a measure of responsiveness to more favorable environments. Genetic correlations among WL ranged from 0.87 to 0.56, however in contrast, resilience was either not or slightly negatively genetically correlated with WL except for moderate correlations with the ‘crisis’ WL. Thus, breeding for improved resilience was predicted to have little effect on forage mass at any given individual water deficit environment. Overall, results indicated that this novel metric could facilitate breeding for improved resilience per se to water deficit environments.

2017 ◽  
Vol 9 (1) ◽  
pp. 156-177 ◽  
Author(s):  
Hossein Malekinezhad ◽  
Fatemeh Barzegai Banadkooki

Abstract This paper analyzes the impacts of climate change and human pressures on Yazd-Ardakan aquifer using the Hadley Centre Coupled Model, version 3 (HADCM3) circulation Model and A2 emission scenario. Water levels in the study aquifer were simulated using three-dimensional finite-difference groundwater model (MODFLOW 2000) with GMS 8.3 as pre- and postprocessing software. Input for groundwater recharge time series under the climate change scenarios were derived using a regression equation based on the cumulative deviation from mean rainfall using MATLAB. Human pressures on the aquifer were modeled through climate change impacts on water requirements of cultivated areas. Three scenarios were simulated to represent the effects of climate change and human pressures on aquifer storage and hydraulic head. Climate change and human pressures (scenario 1) will reduce aquifer storage and result in decreasing hydraulic head by −0.56 m year−1. Reduction in pumping water under scenario 2 (irrigation system modification) and scenario 3 (irrigation system modification and cropping patterns) will result in groundwater level fluctuation of about −0.32 and 0.08 m year−1, respectively. Scenario 3 is capable of restoring and protecting the groundwater resources in Yazd-Ardakan aquifer. The results of this study are useful to obtain sustainable groundwater management in Yazd-Ardakan aquifer.


2021 ◽  
Author(s):  
Tim Busker ◽  
Toon Haer ◽  
Jeroen Aerts ◽  
Hans de Moel ◽  
Bart van den Hurk ◽  
...  

<p>Research shows that climate change will increase the intensity and frequency of extreme summer precipitation events as well as heatwaves, over the coming decades (IPCC, 2014; Russo et al., 2015). Moreover, the impact of heat waves will likely increase in cities due to the urban heat island (UHI) effect (Li & Bou-Zeid, 2013). Green infrastructure (e.g. parks, green roofs, etc.) is generally seen as an effective adaptation measure to address these challenges. The city of Amsterdam has started a project (RESILIO, https://resilio.amsterdam/en/smart-blue-green-roofs) to investigate a new innovation in this field: smart blue-green roofs. These roofs have the advantage over green roofs in that they have an extra water retention layer underneath the green layer, which can be used to buffer peak rainfall or as a capillary irrigation system for the plant layer in hot and dry summer days. The smart valve on the roof can be opened when extreme precipitation is predicted to capture extreme rainfall, but it is yet unknown if this forecast-based drainage provides added value to optimize the operation of the valve.</p><p>Therefore, this study evaluates the performance of European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble precipitation forecasts to trigger drainage from blue-green roofs. A conceptual hydrological model of a blue-green roof in Amsterdam is set up to simulate its operation for the last 5 years. Three drainage strategies can be triggered according to different probabilities of precipitation (30<sup>th</sup>, 60<sup>th</sup> and 90<sup>th</sup> percentile) based on ECMWF data. Each strategy is evaluated on how it leads to (1) minimize the overflow during peak rainfall into the city drainage system, and (2) to maintain high water levels during hot summer days to boost evaporative cooling. Preliminary results show that some early drainage strategies result in capturing 50-100% of rainfall (>10mm/hr), while enough water is available on most hot summer days (T>25℃) to ensure atmospheric cooling through plant transpiration. This implies that relatively low-resolution (18km) precipitation forecasts from ECMWF are valuable for anticipatory water management on a very local scale. These results also show the high potential of blue-green roofs for urban climate adaptation, and the need for anticipatory management of these nature-based solutions. The next research steps will include a city-scale roof suitability analysis that will reveal the value of this solution when implemented at most flat roofs in the city of Amsterdam.</p><p>IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.</p><p>Li, D., & Bou-Zeid, E. (2013). Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. Journal of Applied Meteorology and Climatology. https://doi.org/10.1175/JAMC-D-13-02.1</p><p>Russo, S., Sillmann, J., & Fischer, E. M. (2015). Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environmental Research Letters. https://doi.org/10.1088/1748-9326/10/12/124003</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yusuke Takahashi ◽  
Anqing Zheng ◽  
Shinji Yamagata ◽  
Juko Ando

AbstractUsing a genetically informative design (about 2000 twin pairs), we investigated the phenotypic and genetic and environmental architecture of a broad construct of conscientiousness (including conscientiousness per se, effortful control, self-control, and grit). These four different measures were substantially correlated; the coefficients ranged from 0.74 (0.72–0.76) to 0.79 (0.76–0.80). Univariate genetic analyses revealed that individual differences in conscientiousness measures were moderately attributable to additive genetic factors, to an extent ranging from 62 (58–65) to 64% (61–67%); we obtained no evidence that shared environmental influences were observed. Multivariate genetic analyses showed that for the four measures used to assess conscientiousness, genetic correlations were stronger than the corresponding non-shared environmental correlations, and that a latent common factor accounted for over 84% of the genetic variance. Our findings suggest that individual differences in the four measures of conscientiousness are not distinguishable at both the phenotypic and behavioural genetic levels, and that the overlap was substantially attributable to genetic factors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Benjamin H. Strauss ◽  
Philip M. Orton ◽  
Klaus Bittermann ◽  
Maya K. Buchanan ◽  
Daniel M. Gilford ◽  
...  

AbstractIn 2012, Hurricane Sandy hit the East Coast of the United States, creating widespread coastal flooding and over $60 billion in reported economic damage. The potential influence of climate change on the storm itself has been debated, but sea level rise driven by anthropogenic climate change more clearly contributed to damages. To quantify this effect, here we simulate water levels and damage both as they occurred and as they would have occurred across a range of lower sea levels corresponding to different estimates of attributable sea level rise. We find that approximately $8.1B ($4.7B–$14.0B, 5th–95th percentiles) of Sandy’s damages are attributable to climate-mediated anthropogenic sea level rise, as is extension of the flood area to affect 71 (40–131) thousand additional people. The same general approach demonstrated here may be applied to impact assessments for other past and future coastal storms.


Genetics ◽  
1996 ◽  
Vol 143 (3) ◽  
pp. 1409-1416 ◽  
Author(s):  
Kenneth R Koots ◽  
John P Gibson

Abstract A data set of 1572 heritability estimates and 1015 pairs of genetic and phenotypic correlation estimates, constructed from a survey of published beef cattle genetic parameter estimates, provided a rare opportunity to study realized sampling variances of genetic parameter estimates. The distribution of both heritability estimates and genetic correlation estimates, when plotted against estimated accuracy, was consistent with random error variance being some three times the sampling variance predicted from standard formulae. This result was consistent with the observation that the variance of estimates of heritabilities and genetic correlations between populations were about four times the predicted sampling variance, suggesting few real differences in genetic parameters between populations. Except where there was a strong biological or statistical expectation of a difference, there was little evidence for differences between genetic and phenotypic correlations for most trait combinations or for differences in genetic correlations between populations. These results suggest that, even for controlled populations, estimating genetic parameters specific to a given population is less useful than commonly believed. A serendipitous discovery was that, in the standard formula for theoretical standard error of a genetic correlation estimate, the heritabilities refer to the estimated values and not, as seems generally assumed, the true population values.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Patrick L. Barnard ◽  
Jenifer E. Dugan ◽  
Henry M. Page ◽  
Nathan J. Wood ◽  
Juliette A. Finzi Hart ◽  
...  

AbstractAs the climate evolves over the next century, the interaction of accelerating sea level rise (SLR) and storms, combined with confining development and infrastructure, will place greater stresses on physical, ecological, and human systems along the ocean-land margin. Many of these valued coastal systems could reach “tipping points,” at which hazard exposure substantially increases and threatens the present-day form, function, and viability of communities, infrastructure, and ecosystems. Determining the timing and nature of these tipping points is essential for effective climate adaptation planning. Here we present a multidisciplinary case study from Santa Barbara, California (USA), to identify potential climate change-related tipping points for various coastal systems. This study integrates numerical and statistical models of the climate, ocean water levels, beach and cliff evolution, and two soft sediment ecosystems, sandy beaches and tidal wetlands. We find that tipping points for beaches and wetlands could be reached with just 0.25 m or less of SLR (~ 2050), with > 50% subsequent habitat loss that would degrade overall biodiversity and ecosystem function. In contrast, the largest projected changes in socioeconomic exposure to flooding for five communities in this region are not anticipated until SLR exceeds 0.75 m for daily flooding and 1.5 m for storm-driven flooding (~ 2100 or later). These changes are less acute relative to community totals and do not qualify as tipping points given the adaptive capacity of communities. Nonetheless, the natural and human built systems are interconnected such that the loss of natural system function could negatively impact the quality of life of residents and disrupt the local economy, resulting in indirect socioeconomic impacts long before built infrastructure is directly impacted by flooding.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hendri Irwandi ◽  
Mohammad Syamsu Rosid ◽  
Terry Mart

AbstractThis research quantitatively and qualitatively analyzes the factors responsible for the water level variations in Lake Toba, North Sumatra Province, Indonesia. According to several studies carried out from 1993 to 2020, changes in the water level were associated with climate variability, climate change, and human activities. Furthermore, these studies stated that reduced rainfall during the rainy season due to the El Niño Southern Oscillation (ENSO) and the continuous increase in the maximum and average temperatures were some of the effects of climate change in the Lake Toba catchment area. Additionally, human interventions such as industrial activities, population growth, and damage to the surrounding environment of the Lake Toba watershed had significant impacts in terms of decreasing the water level. However, these studies were unable to determine the factor that had the most significant effect, although studies on other lakes worldwide have shown these factors are the main causes of fluctuations or decreases in water levels. A simulation study of Lake Toba's water balance showed the possibility of having a water surplus until the mid-twenty-first century. The input discharge was predicted to be greater than the output; therefore, Lake Toba could be optimized without affecting the future water level. However, the climate projections depicted a different situation, with scenarios predicting the possibility of extreme climate anomalies, demonstrating drier climatic conditions in the future. This review concludes that it is necessary to conduct an in-depth, comprehensive, and systematic study to identify the most dominant factor among the three that is causing the decrease in the Lake Toba water level and to describe the future projected water level.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1135
Author(s):  
Carolyn Payus ◽  
Lim Ann Huey ◽  
Farrah Adnan ◽  
Andi Besse Rimba ◽  
Geetha Mohan ◽  
...  

For countries in Southeast Asia that mainly rely on surface water as their water resource, changes in weather patterns and hydrological systems due to climate change will cause severely decreased water resource availability. Warm weather triggers more water use and exacerbates the extraction of water resources, which will change the operation patterns of water usage and increase demand, resulting in water scarcity. The occurrence of prolonged drought upsets the balance between water supply and demand, significantly increasing the vulnerability of regions to damaging impacts. The objectives of this study are to identify trends and determine the impacts of extreme drought events on water levels for the major important water dams in the northern part of Borneo, and to assess the risk of water insecurity for the dams. In this context, remote sensing images are used to determine the degree of risk of water insecurity in the regions. Statistical methods are used in the analysis of daily water levels and rainfall data. The findings show that water levels in dams on the North and Northeast Coasts of Borneo are greatly affected by the extreme drought climate caused by the Northeast Monsoon, with mild to the high risk recorded in terms of water insecurity, with only two of the water dams being water-secure. This study shows how climate change has affected water availability throughout the regions.


2020 ◽  
Author(s):  
Edwin Lauer ◽  
Andrew Sims ◽  
Steven McKeand ◽  
Fikret Isik

Abstract Genetic parameters were estimated using a five-series multienvironment trial of Pinus taeda L. in the southern USA. There were 324 half-sib families planted in five test series across 37 locations. A set of six variance/covariance matrices for the genotype-by-environment (G × E) effect for tree height and diameter were compared on the basis of model fit. In single-series analysis, extended factor analytical models provided generally superior model fit to simpler models for both traits; however, in the combined-series analysis, diameter was optimally modeled using simpler variance/covariance structures. A three-way compound term for modeling G × E interactions among and within series yielded substantial improvements in terms of model fit and standard errors of predictions. Heritability of family means ranged between 0.63 and 0.90 for both height and diameter. Average additive genetic correlations among sites were 0.70 and 0.61 for height and diameter, respectively, suggesting the presence of some G × E interaction. Pairs of sites with the lowest additive genetic correlations were located at opposite ends of the latitude range. Latent factor regression revealed a small number of parents with large factor scores that changed ranks significantly between southern and northern environments. Study Implications Multienvironmental progeny tests of loblolly pine (Pinus taeda L.) were established over 10 years in the southern United States to understand the genetic variation for the traits of economic importance. There was substantial genetic variation between open-pollinated families, suggesting that family selection would be efficient in the breeding program. Genotype-by-environment interactions were negligible among sites in the deployment region but became larger between sites at the extremes of the distribution. The data from these trials are invaluable in informing the breeding program about the genetic merit of selection candidates and their potential interaction with the environment. These results can be used to guide deployment decisions in the southern USA, helping landowners match germplasm with geography to achieve optimal financial returns and conservation outcomes.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 545
Author(s):  
Alexis K. Mills ◽  
Peter Ruggiero ◽  
John P. Bolte ◽  
Katherine A. Serafin ◽  
Eva Lipiec

Coastal communities face heightened risk to coastal flooding and erosion hazards due to sea-level rise, changing storminess patterns, and evolving human development pressures. Incorporating uncertainty associated with both climate change and the range of possible adaptation measures is essential for projecting the evolving exposure to coastal flooding and erosion, as well as associated community vulnerability through time. A spatially explicit agent-based modeling platform, that provides a scenario-based framework for examining interactions between human and natural systems across a landscape, was used in Tillamook County, OR (USA) to explore strategies that may reduce exposure to coastal hazards within the context of climate change. Probabilistic simulations of extreme water levels were used to assess the impacts of variable projections of sea-level rise and storminess both as individual climate drivers and under a range of integrated climate change scenarios through the end of the century. Additionally, policy drivers, modeled both as individual management decisions and as policies integrated within adaptation scenarios, captured variability in possible human response to increased hazards risk. The relative contribution of variability and uncertainty from both climate change and policy decisions was quantified using three stakeholder relevant landscape performance metrics related to flooding, erosion, and recreational beach accessibility. In general, policy decisions introduced greater variability and uncertainty to the impacts of coastal hazards than climate change uncertainty. Quantifying uncertainty across a suite of coproduced performance metrics can help determine the relative impact of management decisions on the adaptive capacity of communities under future climate scenarios.


Sign in / Sign up

Export Citation Format

Share Document