scholarly journals Assessment of Greenhouse Gas Emissions in Soybean Cultivation Fertilized with Biochar from Various Utility Plants

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2224
Author(s):  
Maciej Kuboń ◽  
Marcin Niemiec ◽  
Agnieszka Klimek-Kopyra ◽  
Maciej Gliniak ◽  
Jakub Sikora ◽  
...  

Organic matter is an indispensable element of soil. Its quantity and quality affect its properties, e.g., structure, buffering, sorption capacity, air–water relations, and thermal properties. The purpose of the research was to assess greenhouse gas (GHG) emissions in soybean cultivation, fertilized with biochar from various crops. Two experimental factors were included: the dose of biochar and the type of biochar used as per raw material used in its production. The adopted functional unit was 1 ton of soybeans. To reach the adopted goal, a strict field experiment was carried out. The total amount of GHG emitted by the cultivation was calculated according to the ISO 14040 and ISO 14044 standards. The system boundaries included: GHG emissions from fertilizers and seeds used, GHG emissions related to biochar production, emissions related to fossil fuel combustion, and emissions related to the decomposition of crop residues and soil organic matter and the decomposition of biochar. The results of the research indicate a significant potential of biochar to reduce GHG emissions in agricultural production. From the environmental and production perspective, the addition of biochar at 60 Mg ha−1 is the most advantageous. A further increase in the addition of biochar was related to a decrease in plant yield and an increase in GHG emissions per functional unit of the product. The use of biochar in soybean cultivation resulted in a 25% reduction in GHG emissions compared to the object without the biochar addition. The amount of GHG emissions for soybeans ranged from 846.9 to 1260.1 kg of CO2/Mg. The use of biochar from forest biomass resulted in a higher yield, 12% on average, compared to sunflower husk biochar. The introduction of biochar to soils can be an effective improvement in the economic and environmental efficiency of plant production, as it increases the use of nutrients by the plant and intensifies carbon sequestration in soils.

Soil Research ◽  
2016 ◽  
Vol 54 (2) ◽  
pp. 254 ◽  
Author(s):  
Eva Erhart ◽  
Harald Schmid ◽  
Wilfried Hartl ◽  
Kurt-Jürgen Hülsbergen

Compost fertilisation is one way to close material cycles for organic matter and plant nutrients and to increase soil organic matter content. In this study, humus, nitrogen (N) and energy balances, and greenhouse gas (GHG) emissions were calculated for a 14-year field experiment using the model software REPRO. Humus balances showed that compost fertilisation at a rate of 8 t/ha.year resulted in a positive balance of 115 kg carbon (C)/ha.year. With 14 and 20 t/ha.year of compost, respectively, humus accumulated at rates of 558 and 1021 kg C/ha.year. With mineral fertilisation at rates of 29–62 kg N/ha.year, balances were moderately negative (–169 to –227 kg C/ha.year), and a clear humus deficit of –457 kg C/ha.year showed in the unfertilised control. Compared with measured soil organic C (SOC) data, REPRO predicted SOC contents fairly well with the exception of the treatments with high compost rates, where SOC contents were overestimated by REPRO. GHG balances calculated with soil C sequestration on the basis of humus balances, and on the basis of soil analyses, indicated negative GHG emissions with medium and high compost rates. Mineral fertilisation yielded net GHG emissions of ~2000 kg CO2-eq/ha.year. The findings underline that compost fertilisation holds potential for C sequestration and for the reduction of GHG emissions, even though this potential is bound to level off with increasing soil C saturation.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
E. Jäppinen ◽  
O.-J. Korpinen ◽  
T. Ranta

This study presents two case studies of 100 GWh of forest biomass supply: Rovaniemi in northern Finland and Mikkeli in south-eastern Finland. The study evaluates the effects of local biomass availability and road network properties on the greenhouse gas (GHG) emissions of these two supply chains. The local forest biomass availability around the case study locations, truck transportation distances, and road network properties were analyzed by GIS methods to produce accurate and site-dependent data for the transportation emission calculations. The GHG emissions were then assessed by LCA methods. The total transportation distance to Rovaniemi was 22% larger than to Mikkeli, but the transportation derived GHG emissions were 31% larger. The results highlight the fact that local conditions should always be taken into account when assessing the sustainability of biomass-based energy production.


2008 ◽  
Vol 17 (3) ◽  
pp. 240 ◽  
Author(s):  
H. L. TUOMISTO ◽  
J. HELENIUS

Biofuels have been promoted as a way to reduce greenhouse gas (GHG) emissions, but it is questionable whether they indeed do so. The study compared energy and GHG balances of transport biofuels produced in Finnish conditions. Energy and GHG balances were calculated from a life cycle perspective for biogas when timothy-clover and reed canary grass silages and green manure of an organic farm were used as a raw material. The results were compared with published data on barley-based ethanol, rape methyl ester (biodiesel) and biowaste-based biogas. The energy input for biogas was 22–37% of the output depending on the raw material. The GHG emissions from field-based biogas were 21–36% of emissions from fossil-based fuels. The largest energy input was used in the processing of the biofuels while most of the greenhouse gases were emitted during farming. The GHG emissions of the field-based biogas were emitted mainly from fuels of farming machinery, nitrous oxide (N2O) emissions of the soil and the production of ensiling additives. The energy efficiency was most sensitive to the methane yield, and GHG emissions to the N2O emissions. Biogas had clearly lower energy input and GHG emissions per unit energy output than domestic barley-based ethanol and biodiesel.;


Author(s):  
Hanna Pondel

Changes in seasonal weather cycles, a growing number of extreme phenomena, an upward trend in temperature and changes in the distribution of rainfall, significantly affect the functioning and effectiveness of agriculture. However, agriculture plays a major role in the emergence and intensification of these phenomena. The aim of the article is to present, analyse and evaluate the relations between agriculture and climate, with particular emphasis on greenhouse gas (GHG) emissions from agriculture in these relations. A cause-and-effect analysis was conducted based on literature studies, using the descriptive statistics method and analysis of the development trend. The basis for analysis were data on GHG emissions in the European Union (EU-28). The contribution of agriculture to the EU’s greenhouse gas emissions, albeit slightly but still increasing in recent years. The level of this emission is determined primarily by the type of agricultural activity conducted – animal production is definitely responsible for higher emissions than plant production. It is difficult to present a universal model of agricultural adaptation to climate change and a set of actions limiting the negative impact of agricultural production on climate. This is hindered by both the specificity of the agricultural sector and the large diversity of local conditions and applied farming practices. The opportunity to increase the effectiveness of actions taken may be a better connection between the implementation of objectives including the reduction of the causes and negative consequences of climate change and the objectives of sustainable agricultural development.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 493
Author(s):  
Beatriz Moreno-García ◽  
Mónica Guillén ◽  
Dolores Quílez

The great increase in livestock production in some European areas makes it necessary to recycle organic slurries and manures and to integrate them in crop production. In Northeast Spain, the application of pig slurry (PS) is being extended to alternative crops such as rice due to the great increase in pig production. However, there is a lack of information of the effect of substitution of synthetic fertilizers with pig slurry on greenhouse gas (GHG) emissions in rice crop, and this information is key for the sustainability of these agricultural systems. The aim of this study was to evaluate the effect of the substitution of mineral fertilizers by PS on GHG emissions in Mediterranean flooded rice cultivation conditions under optimal nitrogen (N) fertilization. Two field experiments were carried out in two different (contrasting) soil types with different land management. Site 1 had been cultivated for rice in the previous three years with no puddling practices. Site 2 had been cultivated for rice for more than 15 years with puddling tillage practices and had higher organic matter content than site 1. The cumulative nitrous oxide emissions during the crop season were negative at both sites, corroborating that under flooded conditions, methane is the main contributor to global warming potential rather than nitrous oxide. The substitution of mineral fertilizer with PS before seeding at the same N rate did not increase emissions in both sites. However, at site 1 (soil with lower organic matter content), the higher PS rate applied before seeding (170 kg N ha−1) increased methane emissions compared to the treatments with lower PS rate and mineral fertilizer before seeding (120 kg N ha−1) and complemented with topdressing mineral N. Thus, a sustainable strategy for inclusion of PS in rice fertilization is the application of moderate PS rates before seeding (≈120 kg N ha−1) complemented with mineral N topdressing.


2007 ◽  
Vol 363 (1492) ◽  
pp. 789-813 ◽  
Author(s):  
Pete Smith ◽  
Daniel Martino ◽  
Zucong Cai ◽  
Daniel Gwary ◽  
Henry Janzen ◽  
...  

Agricultural lands occupy 37% of the earth's land surface. Agriculture accounts for 52 and 84% of global anthropogenic methane and nitrous oxide emissions. Agricultural soils may also act as a sink or source for CO 2 , but the net flux is small. Many agricultural practices can potentially mitigate greenhouse gas (GHG) emissions, the most prominent of which are improved cropland and grazing land management and restoration of degraded lands and cultivated organic soils. Lower, but still significant mitigation potential is provided by water and rice management, set-aside, land use change and agroforestry, livestock management and manure management. The global technical mitigation potential from agriculture (excluding fossil fuel offsets from biomass) by 2030, considering all gases, is estimated to be approximately 5500–6000 Mt CO 2 -eq. yr −1 , with economic potentials of approximately 1500–1600, 2500–2700 and 4000–4300 Mt CO 2 -eq. yr −1 at carbon prices of up to 20, up to 50 and up to 100 US$ t CO 2 -eq. −1 , respectively. In addition, GHG emissions could be reduced by substitution of fossil fuels for energy production by agricultural feedstocks (e.g. crop residues, dung and dedicated energy crops). The economic mitigation potential of biomass energy from agriculture is estimated to be 640, 2240 and 16 000 Mt CO 2 -eq. yr −1 at 0–20, 0–50 and 0–100 US$ t CO 2 -eq. −1 , respectively.


Author(s):  
Amin Mirkouei ◽  
Karl R. Haapala ◽  
John Sessions ◽  
Ganti S. Murthy

Recent growing interest in reducing greenhouse gas (GHG) emissions requires the application of effective energy solutions, such as the utilization of renewable resources. Biomass represents a promising renewable resource for bioenergy, since it has the potential to reduce GHG emissions from various industry sectors. In spite of the potential benefits, biomass is limited due to logistical challenges of collection and transport to bio-refineries. This study proposes a forest biomass-to-bio-oil mixed supply chain network to reduce the GHG emissions compared to a conventional bioenergy supply chain. The mixed supply chain includes mixed-mode bio-refineries and mixed-pathway transportation. Life cycle assessment is conducted for a case study in the Pacific Northwest with the assistance of available life cycle inventory data for biomass-to-bio-oil supply chain. Impact assessment, on a global warming potential (GWP) basis, is conducted with the assistance of databases within SimaPro 8 software. Sensitivity analysis for the case investigated indicates that using the mixed supply chain can reduce GHG emissions by 2–5% compared to the traditional supply chain.


2021 ◽  
Vol 11 (24) ◽  
pp. 11931
Author(s):  
Pratham Arora ◽  
Ronald R. Chance ◽  
Howard Hendrix ◽  
Matthew J. Realff ◽  
Valerie M. Thomas ◽  
...  

Refined bio-crude production from hydrothermal liquefaction of algae holds the potential to replace fossil-based conventional liquid fuels. The microalgae act as natural carbon sequestrators by consuming CO2. However, this absorbed CO2 is released to the atmosphere during the combustion of the bio-crude. Thus, the life-cycle greenhouse gas (GHG) emissions of refined bio-crude are linked to the production and supply of the materials involved and the process energy demands. One prominent raw material is CO2, which is the main source of carbon for algae and the subsequent products. The emissions associated with the supply of CO2 can have a considerable impact on the sustainability of the algae-based refined bio-crude production process. Furthermore, the diurnal algae growth cycle complicates the CO2 supply scenarios. Traditionally, studies have relied on CO2 supplied from existing power plants. However, there is potential for building natural gas or biomass-based power plants with the primary aim of supplying CO2 to the biorefinery. Alternately, a direct air capture (DAC) process can extract CO2 directly from the air. The life-cycle GHG emissions associated with the production of refined bio-crude through hydrothermal liquefaction of algae are presented in this study. Different CO2 supply scenarios, including existing fossil fuel power plants and purpose-built CO2 sources, are compared. The integration of the CO2 sources with the algal biorefinery is also presented. The CO2 supply from biomass-based power plants has the highest potential for GHG reduction, with a GHG footprint of −57 g CO2 eq./MJ refined bio-crude. The CO2 supply from the DAC process has a GHG footprint of 49 CO2 eq./MJ refined bio-crude, which is very similar to the scenario that considers the supply of CO2 from an existing conventional natural gas-based plant and takes credit for the carbon utilization.


2011 ◽  
Vol 87 (1) ◽  
pp. 71-76 ◽  
Author(s):  
David Paré ◽  
Pierre Bernier ◽  
Evelyne Thiffault ◽  
Brian D Titus

There is a growing interest in using forest biomass as an energy source. The main objectives of this paper are to give somefigures and perspectives on Canadian forest biomass supply with respect to Canada’s energy demand and to examine thepotential of using this feedstock for reducing our greenhouse gas (GHG) emissions. Published estimates of forest biomasssupply as harvest residues are reported and discussed. The range of estimates listed here indicates that this source ofenergy is important but that it is still a fraction of our energy demands. The potential of using this biomass to reduce ourGHG emissions is strongly dependent, among other factors, on the technological pathways that are used, with direct heatproduction and combined heat and power (CHP) ranking amongst the best options available. The relative scarcity of theresource behooves us to use it efficiently. Key words: forest biomass, residue, greenhouse gas, mitigation, energy, sustainable forestry


2012 ◽  
Vol 518-523 ◽  
pp. 1468-1474 ◽  
Author(s):  
Unchalee Suwanmanee ◽  
Thanawadee Leejarkpai ◽  
Thumrongrut Mungcharoen

This study aims to assess greenhouse gas (GHG) emissions of Poy(lactic acid) (PLA) with cassava starch blend (PLA/starch) and Poly(ethylene terephthalate) (PET) trays from cradle to grave. The various waste treatment scenarios were considered. The functional unit is specified as 10,000 units of 8 x 10 x 2.5 cm. of PLA/starch and PET trays which weigh 597.6 and 582.7.5 kilograms, respectively. The results from cradle to production gate were found that GHG emissions of PLA/starch has 51.38% lower than that of PET. This is because PET has higher weight of the trays. The resin production stage of PET tray has the highest of greenhouse GHG emissions. The results from cradle to grave show that the highest total GHG emissions are observed from PLA/starch or PET trays with 90% of landfill and 10% of incineration. The lowest GHG emissions from disposal PLA/starch and PET trays are from landfill with biogas recovery and incineration with heat recovery. This can be reduced GHG emissions by 3.11103 and 1.28103 kg CO2 equivalent.


Sign in / Sign up

Export Citation Format

Share Document