scholarly journals Using Hyperspectral and Multispectral Indices to Detect Water Stress for an Urban Turfgrass System

Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 439 ◽  
Author(s):  
Badzmierowski ◽  
McCall ◽  
Evanylo

Spectral reflectance measurements collected from hyperspectral and multispectral radiometers have the potential to be a management tool for detecting water and nutrient stress in turfgrass. Hyperspectral radiometers collect hundreds of narrowband reflectance data compared to multispectral radiometers that collect three to ten broadband reflectance data for a cheaper cost. Spectral reflectance data have been used to create vegetation indices such as the normalized difference vegetation index (NDVI) and the simple ratio vegetation index (RVI) to assess crop growth, density, and fertility. Other indices such as the water band index (WBI) (narrowband index) and green-to-red ratio index (GRI) (both broadband and narrowband index) have been proposed to predict soil moisture status in turfgrass systems. The objective of this study was to compare the value of multispectral and hyperspectral radiometers to assess soil volumetric water content (VWC) and tall fescue (Festuca arundinacea Schreb.) responses. The multispectral radiometer VI had the strongest relationships to turfgrass quality, biomass, and tissue N accumulation during the trial period (April 2017–August 2018). Soil VWC had the strongest relationship to WBI (r = 0.60), followed by GRI and NDVI (both r = 0.54) for the 0% evapotranspiration (ET). Nonlinear regression showed strong relationships at high water stress periods in each year for WBI (r = 0.69–0.79), GRI (r = 0.64–0.75), and NDVI (r = 0.58–0.79). Broadband index data collected using a mobile multispectral sensor is a cheaper alternative to hyperspectral radiometry and can provide better spatial coverage.

Agriculture ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 116 ◽  
Author(s):  
Alessandro Matese ◽  
Salvatore Di Gennaro

High spatial ground resolution and highly flexible and timely control due to reduced planning time are the strengths of unmanned aerial vehicle (UAV) platforms for remote sensing applications. These characteristics make them ideal especially in the medium–small agricultural systems typical of many Italian viticulture areas of excellence. UAV can be equipped with a wide range of sensors useful for several applications. Numerous assessments have been made using several imaging sensors with different flight times. This paper describes the implementation of a multisensor UAV system capable of flying with three sensors simultaneously to perform different monitoring options. The intra-vineyard variability was assessed in terms of characterization of the state of vines vigor using a multispectral camera, leaf temperature with a thermal camera and an innovative approach of missing plants analysis with a high spatial resolution RGB camera. The normalized difference vegetation index (NDVI) values detected in different vigor blocks were compared with shoot weights, obtaining a good regression (R2 = 0.69). The crop water stress index (CWSI) map, produced after canopy pure pixel filtering, highlighted the homogeneous water stress areas. The performance index developed from RGB images shows that the method identified 80% of total missing plants. The applicability of a UAV platform to use RGB, multispectral and thermal sensors was tested for specific purposes in precision viticulture and was demonstrated to be a valuable tool for fast multipurpose monitoring in a vineyard.


2020 ◽  
Vol 9 (4) ◽  
pp. 257 ◽  
Author(s):  
Kiwon Lee ◽  
Kwangseob Kim ◽  
Sun-Gu Lee ◽  
Yongseung Kim

Surface reflectance data obtained by the absolute atmospheric correction of satellite images are useful for land use applications. For Landsat and Sentinel-2 images, many radiometric processing methods exist, and the images are supported by most types of commercial and open-source software. However, multispectral KOMPSAT-3A images with a resolution of 2.2 m are currently lacking tools or open-source resources for obtaining top-of-canopy (TOC) reflectance data. In this study, an atmospheric correction module for KOMPSAT-3A images was newly implemented into the optical calibration algorithm in the Orfeo Toolbox (OTB), with a sensor model and spectral response data for KOMPSAT-3A. Using this module, named OTB extension for KOMPSAT-3A, experiments on the normalized difference vegetation index (NDVI) were conducted based on TOC reflectance data with or without aerosol properties from AERONET. The NDVI results for these atmospherically corrected data were compared with those from the dark object subtraction (DOS) scheme, a relative atmospheric correction method. The NDVI results obtained using TOC reflectance with or without the AERONET data were considerably different from the results obtained from the DOS scheme and the Landsat-8 surface reflectance of the Google Earth Engine (GEE). It was found that the utilization of the aerosol parameter of the AERONET data affects the NDVI results for KOMPSAT-3A images. The TOC reflectance of high-resolution satellite imagery ensures further precise analysis and the detailed interpretation of urban forestry or complex vegetation features.


Author(s):  
Eniel Rodríguez-Machado ◽  
Osmany Aday-Díaz ◽  
Luis Hernández-Santana ◽  
Jorge Luís Soca-Muñoz ◽  
Rubén Orozco-Morales

Precision agriculture, making use of the spatial and temporal variability of cultivable land, allows farmers to refine fertilization, control field irrigation, estimate planting productivity, and detect pests and disease in crops. To that end, this paper identifies the spectral reflectance signature of brown rust (Puccinia melanocephala) and orange rust (Puccinia kuehnii), which contaminate sugar cane leaves (Saccharum spp.). By means of spectrometry, the mean values and standard deviations of the spectral reflectance signature are obtained for five levels of contamination of the leaves in each type of rust, observing the greatest differences between healthy and diseased leaves in the red (R) and near infrared (NIR) bands. With the results obtained, a multispectral camera was used to obtain images of the leaves and calculate the Normalized Difference Vegetation Index (NDVI). The results identified the presence of both plagues by differentiating healthy from contaminated leaves through the index value with an average difference of 11.9% for brown rust and 9.9% for orange rust.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Huanjiong Wang ◽  
Junhu Dai ◽  
Quansheng Ge

Continuous satellite datasets are widely used in tracking vegetation responses to climate variability. Start of season (SOS), for example, can be derived using a number of methods from the time series of satellite reflectance data; however, various methods often produce different SOS measures which limit the application of satellite data in phenological studies. Therefore, we employed five methods to estimate SOS from the Advanced Very High Resolution Radiometer (AVHRR)/normalized difference vegetation index (NDVI) dataset. Subsequently, we compared the SOS with the ground-based first leaf date (FLD) of 12 deciduous broadleaved plant species at 12 sites of the Chinese Phenological Observation Network (CPON). The results show that the latitudinal patterns of five satellite-derived SOS measures are similar to each other but different from the pattern of ground phenology. For individual methods, the variability of SOS time series is significantly different from ground phenology except for HANTS, Polyfit, and Midpoint methods. The SOS calculated using the Midpoint method showed significant correlations with ground phenophases most frequently (in 47.1% of cases). Using the SOS derived from the Midpoint method, significantly earlier trends in SOS were detected in 50.7% of the natural vegetation area from 1982 to 2006.


Author(s):  
H. R. Naveen ◽  
B. Balaji Naik ◽  
G. Sreenivas ◽  
Ajay Kumar ◽  
J. Adinarayana ◽  
...  

Aims/Objectives: Is to examine the use of spectral reflectance characteristics and explore the effectiveness of spectral indices under water and nitrogen stress environment. Study Design: Split-plot. Place and Duration of Study: Agro Climate Research Center, A.R.I., P.J.T.S. Agricultural University, Rajendranagar, Hyderabad, India in 2018-19. Methodology: Fixed amount of 5 cm depth of water was applied to each plot when the ratio of irrigation water and cumulative pan evaporation (IW/CPE) arrives at pre-determined levels of 0.6, 0.8 & 1.2 as main-plot and 3 nitrogen levels viz. 100, 200 & 300 kg N ha-1 as a subplot to create water and nitrogen stress environment. Spectral reflectance from each treatment was measured using Spectroradiometer and analyzed using statistical software package SPSS 17, SAS and trial version of UNSCRABLER. Results: At tasseling and dough stages, the reflectance pattern of maize was found to be higher in visible light spectrum of 400 to700 nm whereas lower in near-infrared region (700 to 900) in both underwater (IW/CPE ratio of 0.6) and nitrogen stress (100 kg N ha-1) environment as compared to moderate and no stress irrigation (IW/CPE ratio of 0.8 & 1.2) and nitrogen (200 and 300 kg N ha-1) treatments. The discriminant analysis of NDVI, GNDVI, WBI and SR indicated that 72.2% and 66.7% of the original grouped cases and 55.6% and 38.9% of the cross-validated grouped cases under irrigation and nitrogen levels, respectively were correctly classified. Conclusion: Hyperspectral remote sensing can be used as a tool to detect and quantify the water and nitrogen stress in maize non-destructively. Spectral vegetation indices viz. Normalized Difference Vegetation Index (NDVI) and Green Normalized Difference Vegetation Index (GNDVI) were found effective to distinguish water and nitrogen stress severity in maize.


2018 ◽  
Vol 8 (2) ◽  
pp. 249-259 ◽  
Author(s):  
Miloš Barták ◽  
Kumud Bandhu Mishra ◽  
Michaela Marečková

Lichens, in polar and alpine regions, pass through repetitive dehydration and rehydration events over the years. The harsh environmental conditions affect the plasticity of lichen’s functional and structural features for their survival, in a species-specific way, and, thus, their optical and spectral characteristics. For an understanding on how dehydration affects lichens spectral reflectance, we measured visible (VIS) and near infrared (NIR) reflectance spectra of Dermatocarpon polyphyllizum, a foliose lichen species, from James Ross Island (Antarctica), during gradual dehydration from fully wet (relative water content (RWC) = 100%) to dry state (RWC = 0%), under laboratory conditions, and compared several derived reflectance indices (RIs) to RWC. We found a curvilinear relationship between RWC and range of RIs: water index (WI), photochemical reflectance index (PRI), normalized difference vegetation index (NDVI), modified chlorophyll absorption in reflectance indices (MCARI and MCARI1), simple ratio pigment index (SRPI), normalized pigment chlorophyll index (NPCI), and a new NIR shoulder region spectral ratio index (NSRI). The index NDVI was initially increased with maxima around 70% RWC and it steadily declined with further desiccation, whereas PRI in-creased with desiccation and steeply falls when RWC was below 10%. The curvilinear relationship, for RIs versus RWC, was best fitted by polynomial regressions of second or third degree, and it was found that RWC showed very high correlation with WI (R2 = 0.94) that is followed by MCARI (R2 = 0.87), NDVI (R2 = 0.83), and MCARI (R2 = 0.81). The index NSRI, proposed for accessing structural deterioration, was almost invariable during dehydration with the least value of the coefficient of determination (R2 = 0.28). This may mean that lichen, Dermatocarpon polyphyllizum, activates protection mechanisms initially in response to the progression of dehydration; however, severe dehydration causes deactivation of photosynthesis and associated pigments without much affecting its structure.


Author(s):  
Thales M. de A. Silva ◽  
Domingos S. M. Valente ◽  
Francisco de A. de C. Pinto ◽  
Daniel M. de Queiroz ◽  
Nerilson T. Santos

ABSTRACT Vegetation indexes are important indicators of the health and yield of agricultural crops. Among the sensors used to evaluate vegetation indexes, proximal sensors can be used for real-time decision-making. Thus, the objective of this study was to develop a proximal sensor system based on phototransistors to acquire and store the following vegetation indexes: normalized difference vegetation index, simple ratio, wide dynamic range vegetation index, soil-adjusted vegetation index, and optimized soil-adjusted vegetation index. The sensor system was developed using an analog circuit to acquire reflectance data from red and near-infrared bands. The sensor system was calibrated according to the results of a spectroradiometer, using Zoysia japonica grass as the target. An algorithm that calculates and stores vegetation indexes in a file was developed. The Pearson correlation between the vegetation indexes obtained with the sensor system and the spectroradiometer was evaluated. The vegetation indexes presented a Pearson correlation higher than 0.92 to the estimated values by the spectroradiometer. Under the evaluation conditions, the proposed sensor system could be used to determine all vegetation indexes evaluated.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1139 ◽  
Author(s):  
Keirith Snyder ◽  
Justin Huntington ◽  
Bryce Wehan ◽  
Charles Morton ◽  
Tamzen Stringham

Phenology of plants is important for ecological interactions. The timing and development of green leaves, plant maturity, and senescence affects biophysical interactions of plants with the environment. In this study we explored the agreement between land-based camera and satellite-based phenology metrics to quantify plant phenology and phenophases dates in five plant community types characteristic of the semi-arid cold desert region of the Great Basin. Three years of data were analyzed. We calculated the Normalized Difference Vegetation Index (NDVI) for both land-based cameras (i.e., phenocams) and Landsat imagery. NDVI from camera images was calculated by taking a standard RGB (red, green, and blue) image and then a near infrared (NIR) plus RGB image. Phenocam NDVI was calculated by extracting the red digital number (DN) and the NIR DN from images taken a few seconds apart. Landsat has a spatial resolution of 30 m2, while phenocam spatial resolution can be analyzed at the single pixel level at the scale of cm2 or area averaged regions can be analyzed with scales up to 1 km2. For this study, phenocam regions of interest were used that approximated the scale of at least one Landsat pixel. In the tall-statured pinyon and juniper woodland sites, there was a lack of agreement in NDVI between phenocam and Landsat NDVI, even after using National Agricultural Imagery Program (NAIP) imagery to account for fractional coverage of pinyon and juniper versus interspace in the phenocam data. Landsat NDVI appeared to be dominated by the signal from the interspace and was insensitive to subtle changes in the pinyon and juniper tree canopy. However, for short-statured sagebrush shrub and meadow communities, there was good agreement between the phenocam and Landsat NDVI as reflected in high Pearson’s correlation coefficients (r > 0.75). Due to greater temporal resolution of the phenocams with images taken daily, versus the 16-day return interval of Landsat, phenocam data provided more utility in determining important phenophase dates: start of season, peak of season, and end of season. More specific species-level information can be obtained with the high temporal resolution of phenocams, but only for a limited number of sites, while Landsat can provide the multi-decadal history and spatial coverage that is unmatched by other platforms. The agreement between Landsat and phenocam NDVI for short-statured plant communities of the Great Basin, shows promise for monitoring landscape and regional-level plant phenology across large areas and time periods, with phenocams providing a more comprehensive understanding of plant phenology at finer spatial scales, and Landsat extending the historical record of observations.


2017 ◽  
Vol 11 (1) ◽  
pp. 483-496 ◽  
Author(s):  
Barbara Widhalm ◽  
Annett Bartsch ◽  
Marina Leibman ◽  
Artem Khomutov

Abstract. The active layer above the permafrost, which seasonally thaws during summer, is an important parameter for monitoring the state of permafrost. Its thickness is typically measured locally, but a range of methods which utilize information from satellite data exist. Mostly, the normalized difference vegetation index (NDVI) obtained from optical satellite data is used as a proxy. The applicability has been demonstrated mostly for shallow depths of active-layer thickness (ALT) below approximately 70 cm. Some permafrost areas including central Yamal are, however, characterized by larger ALT. Surface properties including vegetation structure are also represented by microwave backscatter intensity. So far, the potential of such data for estimating ALT has not been explored. We therefore investigated the relationship between ALT and X-band synthetic aperture radar (SAR) backscatter of TerraSAR-X (averages for 10  ×  10 m window) in order to examine the possibility of delineating ALT with continuous and larger spatial coverage in this area and compare it to the already-established method of using NDVI from Landsat (30 m). Our results show that the mutual dependency of ALT and TerraSAR-X backscatter on land cover types suggests a connection of both parameters. A range of 5 dB can be observed for an ALT range of 100 cm (40–140 cm), and an R2 of 0.66 has been determined over the calibration sites. An increase of ALT with increasing backscatter can be determined. The root mean square error (RMSE) over a comparably heterogeneous validation site with maximum ALT of  >  150 cm is 20 cm. Deviations are larger for measurement locations with mixed vegetation types (especially partial coverage by cryptogam crust) with respect to the spatial resolution of the satellite data.


Sign in / Sign up

Export Citation Format

Share Document