scholarly journals Extraction of Antioxidants from Blackberry (Rubus ulmifolius L.): Comparison between Ultrasound- and Microwave-Assisted Extraction Techniques

Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 745 ◽  
Author(s):  
Estrella Espada-Bellido ◽  
Marta Ferreiro-González ◽  
Ceferino Carrera ◽  
Miguel Palma ◽  
José A. Álvarez ◽  
...  

Berries are considered functional food because of their potential health benefits to consumers due to their high concentrations in bioactive compounds. The extraction process of their antioxidant compounds is a crucial step. In this work, ultrasound (UAE) and microwave (MAE) assisted extraction have been evaluated and compared for the recovery of total phenolic compounds (TPC) and total anthocyanins (TA) from blackberry. Since several variables have an influence on the extraction processes efficiency, a response surface method using a Box–Behnken design (BBD) was chosen for the optimization of UAE and MAE variables. Six variables (solvent, temperature, amplitude, cycle, pH, and sample:solvent ratio) were optimized for UAE while the optimization for MAE was performed on four variables (solvent, temperature, pH, and sample:solvent ratio). It has been proven that solvent and temperature have a significant influence on the extraction of both TA and TPC. Only 10 and 5 min were necessary to complete the UAE and MAE procedures, respectively. A precision study was also carried out, and coefficient of variation lower than 5% was determined. Non-significant differences were obtained when using UAE and MAE at their respective optimum conditions. Thus, the results demonstrated a successful potential use of both techniques for the extraction of TA and TPC from blackberry. In conclusion, this work shows interesting perspectives for quality control analytical laboratories for the development of rapid extraction techniques to quantify these antioxidant compounds in blackberries.

2021 ◽  
Vol 68 (3) ◽  
pp. 658-666
Author(s):  
Izzet Turker ◽  
Hilal Isleroglu

In this study, bioactive compounds were extracted by ultrasonic-assisted extraction and classical extraction processes using distilled water as solvent from artichoke leaves which are considered as agricultural wastes. Antioxidant capacity, total phenolic and total flavonoid content values of the obtained bioactive extracts were determined, and extraction yields and times were evaluated to compare the extraction processes. Also, the optimum extraction conditions of ultrasonic-assisted extraction (extraction time and ultrasonic power) which provide the highest extraction yield were determined using D-optimal design by ‘desirability’ function approach. According to the results, bioactive extracts having high antioxidant capacity were obtained at shorter times and higher extraction yields were achieved by ultrasonic-assisted extraction process than classical extraction. The highest extraction yield was estimated as 98.46% with an application of 20.05 minutes of extraction time and 65.02% of ultrasonic amplitude for the ultrasonic-assisted extraction process.


Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 148 ◽  
Author(s):  
Mercedes Vázquez-Espinosa ◽  
Ana V. González de Peredo ◽  
Marta Ferreiro-González ◽  
Ceferino Carrera ◽  
Miguel Palma ◽  
...  

Research interest regarding maqui (Aristotelia chilensis) has increased over the last years due to its potential health benefits as one of the most antioxidant-rich berries. Ultrasound-assisted extraction (UAE) is an advanced green, fast, and ecological extraction technique for the production of high quality extracts from natural products, so it has been proposed in this work as an ideal alternative extraction technique for obtaining extracts of high bioactivity from maqui berries. In order to determine the optimal conditions, the extraction variables (percentage of methanol, pH, temperature, ratio “sample mass/volume of solvent”, amplitude, and cycle) were analyzed by a Box-Behnken design, in conjunction with the response surface method. The statistical analysis revealed that the temperature and the percentage of methanol were the most influential variables on the extraction of the total phenolic compounds and total anthocyanins, respectively. The optimal extraction time was determined at 15 min for total phenolic compounds, while it was only 5 min for anthocyanins. The developed methods showed a high precision level with a coefficient of variation of less than 5%. Finally, the new methods were successfully applied to several real samples. Subsequently, the results were compared to those that were obtained in previous experiments by means of microwave assisted extraction (MAE). Similar extraction yields were obtained for phenolic compounds under optimized conditions. However, UAE proved to be slightly more efficient than MAE in the extraction of anthocyanins.


2020 ◽  
Author(s):  
M. Shahinuzzaman ◽  
Parul Akhtar ◽  
N. Amin ◽  
Yunus Ahmed ◽  
Farah Anuar ◽  
...  

Abstract In this study, the extraction conditions to maximize the antioxidant activity and total phenolic content of Ficus auriculata were optimized using response surface methodology. For the purpose of extraction, the Ultrasonic assisted extraction technique was employed. A second-order polynomial model satisfactorily fitted to the experimental findings concerning antioxidant activity (R2 = 0.968, P<0.0001) and total phenolic content (R2 = 0.961, P<0.0001), indicating a significant correlation between the experimental and expected value. The highest antioxidant activity (85.20 ± 0.96 %) for DPPH were achieved at the optimum extraction parameters of 52.5% ethanol (v/v), 40.0 °C temperature, and 22 min extraction time. Alternatively, the highest yield of total phenolic content was found 31.65 ± 0.94 mg GAE/g DF at the optimum extraction conditions. From the LC-ESI-MS profiling of the optimized extract, 18 bioactive compounds were tentatively identified, which may regulate the antioxidant activity of fruits of F. auriculata.


2020 ◽  
Vol 5 (1) ◽  
pp. 857-870
Author(s):  
Fernando Gonçalves ◽  
João Carlos Gonçalves ◽  
Ana Cristina Ferrão ◽  
Paula Correia ◽  
Raquel P. F. Guiné

AbstractRecently, edible flowers (EF) have aroused increased interest because of their aesthetic properties as well as potential health benefits related to the occurrence of some bioactive compounds. Therefore, the aim of this work was to evaluate the total phenolics, anthocyanins, flavonoids, and antioxidant activity (AOA) (following DPPH and ABTS methods) in eleven EF. The samples were subjected to three successive extraction steps using methanol, and these extracts were then analysed for the aforementioned properties using spectrophotometric methods. The obtained extracts were used for the quantification of phenolic composition and AOA. The results indicated that, among the flowers analysed in this study, red rose, pink rose, and red carnation possessed the highest total phenolic contents (27.53, 23.30, and 18.17 mg g−1 gallic acid equivalents, respectively), total anthocyanins (3.07, 1.97, and 4.47 mg g−1 catechin equivalents [CE], respectively), and AOA (12.07, 15.77, and 12.93 mg g−1 TE, respectively, as given by the DPPH method or 8.23, 9.27 and 8.00 mg g−1 TE, respectively, as given by the ABTS method). The flowers with highest flavonoids contents were red carnation, Mexican marigold, and pink rose (17.50, 16.90, and 16.57 mg g−1 CE, respectively). Cluster analysis grouped the analysed flowers into two groups, those richest in phenolics with AOA and those not so rich. Finally, some important correlations were observed between the total phenolics and the AOA. In conclusion, these flowers could represent a potential source of natural compounds with antioxidant capacity.


Author(s):  
Carolina Chiellini ◽  
Monica Macaluso ◽  
Adriana Ciurli ◽  
Lorenzo Guglielminetti ◽  
Isabella Taglieri ◽  
...  

The Mediterranean diet has among its cornerstones the use of olive oil for its nutraceutical and organoleptic properties. Despite the numerous merits, olive-oil mill wastewater (OMWW), which is generated by the olive-oil extraction process, is one of the most serious environmental pollutants in the Mediterranean countries. The polluting potential of OMWW is due to its high content of tannins, polyphenols, polyalcohols, pectins and lipids. In this experiment, we tested the ability of five microalgae of the Chlorella group (SEC_LI_ChL_1, CL-Sc, CL-Ch, FB and Idr) in lowering the percentage of total phenolic compounds in vegetation water. In order to close the recovery cycle of a fortified citrus olive oils previously developed, we tested the vegetation wa-ter obtained with three different extraction processes (conventional, lemon and orange peels) at three concentrations each (10%, 25% and 50%). Results showed that strains Idr, FB and CL-Sc from the Lake Massaciuccoli can tolerate vegetation water from conventional and lemon peels extraction up to 25%; these strains can also reduce the phenolic compounds within the tests. The results demonstrate that the application of microalgae for OMWW treatment represent an inter-esting opportunity, and an eco-friendly low-cost solution to be developed within the companies as a full-scale approach.


Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 215 ◽  
Author(s):  
Gualtiero Milani ◽  
Francesca Curci ◽  
Maria Maddalena Cavalluzzi ◽  
Pasquale Crupi ◽  
Isabella Pisano ◽  
...  

Bamboo is a well-known medicinal plant in Southeast Asia that recently has attracted attention for its high polyphenol content and its medical and nutraceutical applications. In this work, polyphenols have been recovered for the first time by microwave-assisted extraction (MAE) from an unusual Italian cultivar of Phyllostachys pubescens bamboo shoots. The effects of three independent variables, such as extraction time, temperature, and solid/liquid ratio, on polyphenol recovery yield were investigated and successfully optimized through the response surface methodology. We demonstrated that MAE is an excellent polyphenols extraction technique from bamboo shoots because the total phenolic content obtained under microwave irradiation optimal conditions (4 min at 105 °C with 6.25 mg/mL ratio) was about eight-fold higher than that obtained with the conventional extraction method. Furthermore, higher total flavonoid content was also obtained under MAE. Consistent with these results, MAE enhanced the extract antioxidant properties with significant improved DPPH, ABTS, and FRAP scavenging ability. Therefore, this innovative extraction process enhances the recovery of biologically active compounds from Phyllostachys pubescens bamboo shoots with a dramatic reduction of time and energy consumption, which paves the way for its industrial application in functional food production.


2019 ◽  
Vol 8 (3) ◽  
pp. 104
Author(s):  
Bambang Kunarto ◽  
Sutardi Sutardi ◽  
Supriyanto Supriyanto ◽  
Chairil Anwar

Biji melinjo kerikil mengandung senyawa fenolik dan resveratrol sehingga berpotensi sebagai antioksidan, oleh karena itu perlu dilakukan ekstraksi. Metoda ekstraksi konvensional (maserasi, perebusan, refluxing) mempunyai kelemahan yaitu terjadinya kerusakan senyawa fenolik akibat reaksi oksidasi, hidrolisis dan ionisasi selama proses ekstraksi. Oleh karena itu, pada penelitian ini ekstraksi biji melinjo kerikil dilakukan menggunakan metode ekstraksi berbantu gelombang ultrasonik. Penelitian ini bertujuan untuk optimasi ekstraksi biji melinjo kerikil berbantu gelombang ultrasonik yang dilakukan pada berbagai waktu ekstraksi, suhu ekstraksi dan konsentrasi pelarut etanol. Surface response methodology digunakan untuk optimasi kondisi ekstraksi. Biji melinjo kerikil diekstrak menggunakan ultrasonic bath pada frekuensi 40 kHz dengan berbagai suhu (25, 30, 35, 40, 45oC), waktu ekstraksi (10, 20, 30, 40, 50 menit) dan konsentrasi pelarut etanol (40, 50, 60, 70 80%). Hasil penelitian menunjukkan bahwa kondisi optimum ekstraksi biji melinjo kerikil berbantu gelombang ultrasonik adalah pada suhu 30,18oC, waktu 33,01 menit dan konsentrasi pelarut etanol 71,04%. Pada kondisi ini, diperoleh yield ekstrak 18,41 ± 0,01%, total fenolik 11,26 ± 0,06 mg GAE/g, total flavonoid 533,70 ± 0,18 mg CE/100g, resveratrol 7,64 ± 0, 03%, IC50 sebesar 59,52 ± 0,04 ppm dan reducing power 76,31 ± 0,08%. Sebagai kesimpulan, optimasi ekstraksi biji melinjo kerikil berbantu gelombang ultrasonik menggunakan response surface methodology ini cukup baik karena nilai respon yang sebenarnya sesuai dengan nilai respon yang diprediksi.Melinjo kerikil seeds contain phenolic and resveratrol compounds so that it has the potential as an antioxidant, therefore extraction needs to be done. Conventional extraction methods (maceration, boiling, refluxing) have the disadvantage of devasting phenolic compounds due to oxidation, hydrolysis and ionization reactions during the extraction process. Therefore, in this study the extraction of melinjo kerikil seeds done by using the ultrasonic-assisted extraction method. The study aims to optimize ultrasonic-assisted extraction of melinjo kerikil seeds that be done at various extraction times, extraction temperatures and ethanol solvents concentrations. Response surface methodology was used to optimize experimental condition for extraction. Melinjo kerikil seeds were extracted by using ultrasonic bath at a frequency of 40 kHz with various temperatures (25, 30, 35, 40, 45oC), extraction time (10, 20, 30, 40, 50 minutes) and ethanol solvents concentrations (40, 50, 60, 70 80 %). The results showed that the optimum conditions for ultrasonic-assisted extraction of melinjo kerikil seeds were at a temperature of 30.18oC, a time of 33.01 minutes and an ethanol solvent concentration of 71.04%. In this condition, obtained the extract yield 18.41 ± 0.01%, total phenolic 11.26 ± 0.06 mg GAE/g, total flavonoids 533.70 ± 0.18 mg CE/100g, resveratrol 7.64 ± 0,03%, IC50 in the amount of 59.52 ± 0.04 ppm and reducing power 76.31 ± 0.08%. As a conclusion, the optimization ultrasonic-assisted extraction of melinjo kerikil seeds by using response surface methodology is quite good because the actual response value is in accordance with the predicted response value.


Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 1852 ◽  
Author(s):  
Ali Ghasemzadeh ◽  
Hawa Jaafar ◽  
Ali Baghdadi ◽  
Amin Tayebi-Meigooni

Since α-mangostin in mangosteen fruits was reported to be the main compound able to provide natural antioxidants, the microwave-assisted extraction process to obtain high-quality α-mangostin from mangosteen pericarp (Garcinia mangostana L.) was optimized using a central composite design and response surface methodology. The parameters examined included extraction time, microwave power, and solvent percentage. The antioxidant and antimicrobial activity of optimized and non-optimized extracts was evaluated. Ethyl acetate as a green solvent exhibited the highest concentration of α-mangostin, followed by dichloromethane, ethanol, and water. The highest α-mangostin concentration in mangosteen pericarp of 121.01 mg/g dry matter (DM) was predicted at 3.16 min, 189.20 W, and 72.40% (v/v). The verification of experimental results under these optimized conditions showed that the α-mangostin value for the mangosteen pericarp was 120.68 mg/g DM. The predicted models were successfully developed to extract α-mangostin from the mangosteen pericarp. No significant differences were observed between the predicted and the experimental α-mangostin values, indicating that the developed models are accurate. The analysis of the extracts for secondary metabolites showed that the total phenolic content (TPC) and total flavonoid content (TFC) increased significantly in the optimized extracts (OE) compared to the non-optimized extracts (NOE). Additionally, trans-ferulic acid and catechin were abundant among the compounds identified. In addition, the optimized extract of mangosteen pericarp with its higher α-mangostin and secondary metabolite concentrations exhibited higher antioxidant activities with half maximal inhibitory concentration (IC50) values of 20.64 µg/mL compared to those of the NOE (28.50 µg/mL). The OE exhibited the highest antibacterial activity, particularly against Gram-positive bacteria. In this study, the microwave-assisted extraction process of α-mangostin from mangosteen pericarp was successfully optimized, indicating the accuracy of the models developed, which will be usable in a larger-scale extraction process.


2018 ◽  
Vol 83 (11) ◽  
pp. 1273-1284 ◽  
Author(s):  
Marijana Gavrilovic ◽  
Katarina Rajkovic ◽  
Valentina Simic ◽  
Sanja Jeremic ◽  
Snjezana Mirkovic ◽  
...  

The ultrasound-assisted extraction of Juglans nigra L. leaves was optimized with respect to total phenolic content (TP) of the extracts by varying the concentration of aqueous ethanol solution (E) and different solvent-to-solid ratio (S). The influence and optimum of the operating parameters (E and S) was examined using response surface methodology (RSM). The statistical criteria indicated the adequacy, reliability and precision of the developed RSM model. RSM showed that maximum extraction yield of TP 28.59 mg g-1 of draw plant was achieved at the optimal values of 50% E and 20 kg kg-1 S. Using the modelled optimized conditions, the detected relative difference between the predicted and the experimental yield was ?2.3 %. The determined TP content in the extracts varied from 12.54 to 29.26 mg GAE g-1 of dry plant indicated that J. nigra is a valuable source of phenolic substances. The extracts of J. nigra leaves obtained under optimal conditions showed good antioxidant activity (IC50 = 18.91?0.03 ?g cm-3) which was determined by the scavenging effect on 2,2-diphenyl-1-picrylhydrazyl radical. The optimization of the TP extraction process is the important step in improving techno-economics of the potential commercial preparation of J. nigra extracts, as natural source of antioxidants.


2019 ◽  
Vol 70 (3) ◽  
pp. 853-858 ◽  
Author(s):  
Emilija Kostic ◽  
Goran M. Nikolic ◽  
Snezana Mitic ◽  
Danica Dimitrijevic ◽  
Milan Mitic

This paper investigates the influence of operating conditions and extraction techniques (maceration and ultrasonic) on the yield and extraction of dry extract, total phenolic, flavonoids and anthocyanins from black mulberry fruit (Morus nigra L.). The optimal extraction conditions and kinetic parameters of the extraction process are determined.


Sign in / Sign up

Export Citation Format

Share Document