scholarly journals Interplay between Neuroendocrine Biomarkers and Gut Microbiota in Dogs Supplemented with Grape Proanthocyanidins: Results of Dietary Intervention Study

Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 531 ◽  
Author(s):  
Elisa Scarsella ◽  
Michela Cintio ◽  
Lucilla Iacumin ◽  
Federica Ginaldi ◽  
Bruno Stefanon

Several studies on the interaction between gut microbiota and diets, including prebiotics, have been reported in dogs, but no data are available about the effects of dietary administration of grape proanthocyanidins. In the study, 24 healthy adult dogs of different breeds were recruited and divided in 3 groups of 8 subjects each. A group was fed with a control diet (D0), whilst the others were supplemented with 1 (D1) or 3 (D3) mg/kg live weight of grape proanthocyanidins. Samples of feces were collected at the beginning and after 14 and 28 days for microbiota, short chain fatty acid, and lactic acid analysis. Serotonin and cortisol were measured in saliva, collected at the beginning of the study and after 28 days. A significantly higher abundance (p < 0.01) of Enterococcus and Adlercreutzia were observed in D0, whilst Escherichia and Eubacterium were higher in D1. Fusobacterium and Phascolarctobacterium were higher (p < 0.01) in D3. Salivary serotonin increased (p < 0.01) at T28 for D1 and D3 groups but cortisol did not vary. Proanthocyanidins administration influenced the fecal microbiota and neuroendocrine response of dogs, but a high variability of taxa was observed, suggesting a uniqueness and stability of fecal microbiota related to the individual.

2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 1190-1190
Author(s):  
Jingcheng Zhao ◽  
Yunhui Qi ◽  
Peng Liu ◽  
Andrew Severin ◽  
Maryam Sayadi ◽  
...  

Abstract Objectives The objective was to evaluate the prebiotic effects of a milled whole cranberry beverage on modulating the gut microbiota in young adults. Methods Adults (n = 17; ages 18–42 y; BMI 30.5 ± 3.1 kg/m2) were enrolled in a 60-d, two-period, randomized, placebo-controlled, crossover clinical study. Throughout the study, participants were fed a standardized 10-d cycle menu on site. During each 20-d treatment period, participants consumed twice daily a whole cranberry or placebo beverage (240 mL per serving). Treatment periods were separated by an 11-wk washout period and preceded by 10-d run-in periods on the controlled study diet. Fecal samples were collected before and after the dietary intervention for bacterial compositional analysis and short-chain fatty acid analysis by LC-MS/MS. The V5-V6 region of the 16S rRNA gene in fecal DNA was amplified and sequenced. Taxonomy was assigned using the q2-feature-classifier in QIIME2 and matched against the Greengenes 13_8 database. Differential abundance was analyzed using ANCOM2 in R. Alpha-diversity was assessed using Faith's PD, Shannon diversity, and observed OTU richness generated by QIIME 2 and compared between treatments using Mann-Whitney U test. Beta-diversity was compared between treatments using PERMANOVA of the weighted and unweighted UniFrac distances between samples generated by QIIME 2. Results Coriobacteriaceae was significantly more abundant after participants consumed the cranberry as compared with the placebo beverage (ANCOM W &gt; 0.7). The clinically-important pathogen Clostridium perfringens was present after consumption of the placebo beverage, but was a structural zero (not present) after consumption of the cranberry beverage. Alpha-diversity, beta-diversity, and fecal short-chain fatty acid concentrations did not differ between treatments. Conclusions Daily consumption of a whole cranberry beverage resulted in favorable change in the composition of the gut microbiota and thus showed prebiotic potential. Funding Sources Ocean Spray Cranberries, Inc.


2020 ◽  
Author(s):  
Xiaowei Gai ◽  
Huawei Wang ◽  
Yaqing Li ◽  
Haotian Zhao ◽  
Cong He ◽  
...  

AbstractThe gastrointestinal (GI) tract has long been hypothesized to play an integral role in the pathophysiology of sepsis, and gut microbiota (GM) dysbiosis may be the key factor. Previous studies has confirmed that microbiome is markedly altered in critical illness. We aimed to confirm the existence of gut microbiota imbalance in the early stage of sepsis, observe the effect of fecal microbiota transplantation (FMT) on sepsis, and explore whether FMT can reconstruct the GM of septic mice and restore its protective function on the intestinal mucosal barrier. Through the study of flora, mucus layer, tight junction, immune barrier, and short-chain fatty acid changes in septic mice and fecal microbiota transplanted mice, we found that GM imbalance exists early in sepsis. FMT can improve morbidity and effectively reduce mortality in septic mice. After the fecal bacteria were transplanted, the abundance and diversity of the gut flora were restored, and the microbial characteristics of the donors changed. FMT can effectively reduce epithelial cell apoptosis, improve the composition of the mucus layer, upregulate the expression of tight junction proteins, and reduce intestinal permeability and the inflammatory response, thus protecting the intestinal barrier function. After FMT, Lachnospiraceae contributes the most to intestinal protection through enhancement of the L-lysine fermentation pathway, resulting in the production of acetate and butanoate, and may be the key bacteria for short-chain fatty acid metabolism and FMT success.


2021 ◽  
Author(s):  
Shiyi Lu ◽  
Deirdre Mikkelsen ◽  
Hong Yao ◽  
Barbara Williams ◽  
Bernadine Flanagan ◽  
...  

Plant cell walls as well as their component polysaccharides in foods can be utilized to alter and maintain a beneficial human gut microbiota, but it is not known whether the...


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1203
Author(s):  
Jerzy Juśkiewicz ◽  
Aleksandra Rawicka ◽  
Bartosz Fotschki ◽  
Michał Majewski ◽  
Zenon Zduńczyk

We hypothesised that the dietary addition of the bioactive antimicrobial protein lactoferrin (LF) and peptides melittin (MT) or cecropin A (CR) at a dosage of 100 mg/kg to the diet of Wistar rats would result in strong modulatory effects on faecal microbial enzymatic activity, short-chain fatty acid and ammonia concentrations. To date, the changes in bacterial extracellular and intracellular enzymatic activities upon addition of dietary AMPs have not yet been studied. This experiment lasted 15 days; during the first 5 day period, the rats were fed the control diet (S) and diets supplemented with LF, MT or CR. On days 6–15, all rats were fed the control S diet. The faecal fermentation processes were substantially stopped after two days of treatment, on average, in all rats receiving LF and two AMPs. The deepest suppression effect was observed on the last day of treatment (day 5) and persisted through days 5–8. The highest decreases in faecal bacterial β-glucosidase and β-glucuronidase activities as well as in SCFA and ammonia concentrations were observed in the rats fed the CR diet. Only in the CR animals did the mechanism of suppressed microbial fermentation involve diminished enzyme release from bacterial cells to the digesta.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hye-Jin Kim ◽  
Dongwook Kim ◽  
Kwan-Woo Kim ◽  
Sang-Hoon Lee ◽  
Aera Jang

AbstractWe used 16S ribosomal RNA sequencing to evaluate changes in the gut microbiota of mice fed a diet supplemented with either raw or cooked beef loin powder for 9 weeks. Male BALB/c mice (n = 60) were randomly allocated to five groups: mice fed AIN-93G chow (CON), chow containing 5% (5RB) and 10% (10RB) raw beef loin powder, and chow containing 5% (5CB) and 10% (10CB) cooked beef loin powder. Dietary supplementation with both RB and CB increased the relative abundance of Clostridiales compared to the CON diet (p < 0.05). Mice fed 10RB showed a significantly higher relative abundance of Firmicutes (p = 0.018) and Lactobacillus (p = 0.001) than CON mice, and the ratio of Firmicutes/Bacteroidetes showed an increasing trend in the 10RB mice (p > 0.05). Mice fed 10CB showed a higher abundance of Peptostreptococcaceae and a lower abundance of Desulfovibrionaceae compared with the CON mice (p < 0.05). Genes for glycan biosynthesis, which result in short-chain fatty acid synthesis, were enriched in the CB mice compared to the RB mice, which was correlated to a high abundance of Bacteroides. Overall, dietary RB and CB changed the gut microbiota of mice (p < 0.05).


2019 ◽  
Vol 10 (5) ◽  
pp. 2935-2946 ◽  
Author(s):  
Rongkang Hu ◽  
Feng Zeng ◽  
Linxiu Wu ◽  
Xuzhi Wan ◽  
Yongfang Chen ◽  
...  

Carrot juice fermented with Lactobacillus rhamnosus GG, enriched with free phenolics, organic acids and short-chain fatty acid, has the potential to ameliorate type 2 diabetes, in part through modulating specific gut microbiota and regulating the mRNA and protein expressions levels involved in glucose metabolism.


2021 ◽  
Author(s):  
Yi Fan ◽  
Andrew Forgie ◽  
Tingting Ju ◽  
Camila Marcolla ◽  
Tom Inglis ◽  
...  

To maintain food safety and flock health in broiler chicken production, biosecurity approaches to keep chicken barns free of pathogens are important. Canadian broiler chicken producers must deep clean their barns with chemical disinfectants at least once annually (full disinfection; FD) and may wash with water (water-wash; WW) throughout the year. However, many producers use FD after each flock, assuming a greater efficacy of more stringent cleaning protocols, although little information is known regarding how these two cleaning practices affect pathogen population and gut microbiota. In the current study, a cross-over experiment over four production cycles was conducted in seven commercial chicken barns to compare WW and FD. We evaluated the effects of barn cleaning method on the commercial broiler performance, cecal microbiota composition, pathogen occurrence and abundance, as well as short-chain fatty acid concentrations in the month-old broiler gut. The 30-day body weight and mortality rate were not affected by the barn cleaning methods. The WW resulted in a modest but significant effect on the structure of broiler cecal microbiota (weighted-UniFrac; adonis p = 0.05, and unweighted-UniFrac; adonis p = 0.01), with notable reductions in Campylobacter jejuni occurrence and abundance. In addition, the WW group had increased cecal acetate, butyrate and total short-chain fatty acid concentrations, which were negatively correlated with C. jejuni abundance. Our results support the use of WW over FD to enhance the activity of the gut microbiota and potentially reduce zoonotic transmission of C. jejuni in broiler production without previous disease challenges.


Sign in / Sign up

Export Citation Format

Share Document