scholarly journals Anti-Coccidial Effect of Rumex Nervosus Leaf Powder on Broiler Chickens Infected with Eimeria Tenella Oocyst

Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 167
Author(s):  
Mohammed M. Qaid ◽  
Saud I. Al-Mufarrej ◽  
Mahmoud M. Azzam ◽  
Maged A. Al-Garadi ◽  
Hani H. Albaadani ◽  
...  

Coccidiosis a huge economic burden in poultry farms where the pathogen Eimeria harms animal well-being and survival. Besides synthetic anti-coccidial drugs, natural herbs appear to be an alternative way to prevent avian coccidiosis. Rumex nervosus (RN), a phytogenic shrub, has received considerable attention in recent years due to its significant anti-microbial effects; however, limited knowledge exists about its potential anti-coccidial functions. This study was conducted to evaluate the prophylactic and therapeutic activities of RN leaf powder in broilers infected with Eimeria tenella. Infected chickens received a commercial diet containing 1, 3, or 5 g RN powder/kg diet compared to infected broilers that treated with Sacox (PC) or compared to uninfected broilers that received a commercial diet alone (NC). Results showed that RN powder significantly (p < 0.05) reduced the lesion scores and suppressed the output of oocysts per gram (OPG) in chickens’ feces. Although RN was unable to minimize the weight gain loss due to emeriosis, RN at level 1 g improved the feed conversion ratio. Therefore, RN powder, at 5 g, possesses moderate anti-coccidial effects and hence could be used to treat avian coccidiosis in field conditions; however, further studies are required to investigate, in vitro or in vivo, the anti-coccidial potential of active ingredients.

2012 ◽  
Vol 80 (5) ◽  
pp. 1909-1916 ◽  
Author(s):  
Emilio del Cacho ◽  
Margarita Gallego ◽  
Sung Hyen Lee ◽  
Hyun Soon Lillehoj ◽  
Joaquin Quilez ◽  
...  

ABSTRACTThis study describes a novel immunization strategy against avian coccidiosis using exosomes derived fromEimeriaparasite antigen (Ag)-loaded dendritic cells (DCs). Chicken intestinal DCs were isolated and pulsedin vitrowith a mixture of sporozoite-extracted Ags fromEimeria tenella,E. maxima, andE. acervulina, and the cell-derived exosomes were isolated. Chickens were nonimmunized or immunized intramuscularly with exosomes and subsequently noninfected or coinfected withE. tenella,E. maxima, andE. acervulinaoocysts. Immune parameters compared among the nonimmunized/noninfected, nonimmunized/infected, and immunized/infected groups were the numbers of cells secreting Th1 cytokines, Th2 cytokines, interleukin-16 (IL-16), and Ag-reactive antibodiesin vitroandin vivoreadouts of protective immunity againstEimeriainfection. Cecal tonsils, Peyer's patches, and spleens of immunized and infected chickens had increased numbers of cells secreting the IL-16 and the Th1 cytokines IL-2 and gamma interferon, greater Ag-stimulated proliferative responses, and higher numbers of Ag-reactive IgG- and IgA-producing cells followingin vitrostimulation with the sporozoite Ags compared with the nonimmunized/noninfected and nonimmunized/infected controls. In contrast, the numbers of cells secreting the Th2 cytokines IL-4 and IL-10 were diminished in immunized and infected chickens compared with the nonimmunized/noninfected and the nonimmunized/infected controls. Chickens immunized with Ag-loaded exosomes and infectedin vivowithEimeriaoocysts had increased body weight gains, reduced feed conversion ratios, diminished fecal oocyst shedding, lessened intestinal lesion scores, and reduced mortality compared with the nonimmunized/infected controls. These results suggest that successful field vaccination against avian coccidiosis using exosomes derived from DCs incubated with Ags isolated fromEimeriaspecies may be possible.


2014 ◽  
Vol 40 (2) ◽  
pp. 401-407 ◽  
Author(s):  
Hasan Habibi ◽  
Sobhan Firouzi ◽  
Hasan Nili ◽  
Mostafa Razavi ◽  
Seyedeh Leili Asadi ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Nedra Abdelli ◽  
José Francisco Pérez ◽  
Ester Vilarrasa ◽  
Diego Melo-Duran ◽  
Irene Cabeza Luna ◽  
...  

The first objective of this study was to demonstrate the usefulness of the microencapsulation technique to protect fumaric acid and thymol, avoiding their early absorption and ensuring their slow release throughout the gastrointestinal tract (GIT). For this purpose, the release of a lipid matrix microencapsulated brilliant blue (BB) was assessed in vitro, using a simulated broiler intestinal fluid, and in vivo. In vitro results showed that more than 60% of BB color reached the lower intestine, including 26.6 and 29.7% in the jejunum and ileum, respectively. The second objective was to determine the effects of microencapsulated fumaric acid, thymol, and their mixture on the performance and gut health of broilers challenged with a short-term fasting period (FP). One-day-old male ROSS 308 chickens (n = 280) were randomly distributed into seven treatments, with 10 replicates of four birds each. Dietary treatments consisted of a basal diet as negative control (NC), which was then supplemented by either non-microencapsulated fumaric acid (0.9 g/kg), thymol (0.6 g/kg), or a mixture of them. The same additive doses were also administered in a microencapsulated form (1.5 and 3 g/kg for the fumaric acid and thymol, respectively). At day 21, chickens were subjected to a 16.5-h short-term FP to induce an increase in intestinal permeability. Growth performance was assessed weekly. At day 35, ileal tissue and cecal content were collected from one bird per replicate to analyze intestinal histomorphology and microbiota, respectively. No treatment effect was observed on growth performance from day 1 to 21 (p &gt; 0.05). Microencapsulated fumaric acid, thymol, or their mixture improved the overall FCR (feed conversion ratio) and increased ileal villi height-to-crypt depth ratio (VH:CD) (p &lt; 0.001) on day 35 of the experiment. The microencapsulated mixture of fumaric acid and thymol increased cecal abundance of Bacteroidetes, Bacillaceae, and Rikenellaceae, while decreasing that of Pseudomonadaceae. These results indicate that the microencapsulation technique used in the current study can be useful to protect fumaric acid and thymol, avoiding early absorption, ensure their slow release throughout the GIT, and improve their effects on fasted broiler chickens.


2015 ◽  
Vol 81 (17) ◽  
pp. 5880-5888 ◽  
Author(s):  
C. De Maesschalck ◽  
V. Eeckhaut ◽  
L. Maertens ◽  
L. De Lange ◽  
L. Marchal ◽  
...  

ABSTRACTIn broiler chickens, feed additives, including prebiotics, are widely used to improve gut health and to stimulate performance. Xylo-oligosaccharides (XOS) are hydrolytic degradation products of arabinoxylans that can be fermented by the gut microbiota. In the current study, we aimed to analyze the prebiotic properties of XOS when added to the broiler diet. Administration of XOS to chickens, in addition to a wheat-rye-based diet, significantly improved the feed conversion ratio. XOS significantly increased villus length in the ileum. It also significantly increased numbers of lactobacilli in the colon andClostridiumcluster XIVa in the ceca. Moreover, the number of gene copies encoding the key bacterial enzyme for butyrate production, butyryl-coenzyme A (butyryl-CoA):acetate CoA transferase, was significantly increased in the ceca of chickens administered XOS. In this group of chickens, at the species level,Lactobacillus crispatusandAnaerostipes butyraticuswere significantly increased in abundance in the colon and cecum, respectively.In vitrofermentation of XOS revealed cross-feeding betweenL. crispatusandA. butyraticus. Lactate, produced byL. crispatusduring XOS fermentation, was utilized by the butyrate-producingAnaerostipesspecies. These data show the beneficial effects of XOS on broiler performance when added to the feed, which potentially can be explained by stimulation of butyrate-producing bacteria through cross-feeding of lactate and subsequent effects of butyrate on gastrointestinal function.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1348
Author(s):  
Sven Wuertz ◽  
Arne Schroeder ◽  
Konrad M. Wanka

Over the last decades, aquaculture production increased rapidly. The future development of the industry highly relies on the sustainable utilization of natural resources. The need for improving disease resistance, growth performance, food conversion, and product safety for human consumption has stimulated the application of probiotics in aquaculture. Probiotics increase growth and feed conversion, improve health status, raise disease resistance, decrease stress susceptibility, and improve general vigor. Currently, most probiotics still originate from terrestrial sources rather than fish. However, host-associated (autochthonous) probiotics are likely more persistent in the gastrointestinal tract of fish and may, therefore, exhibit longer-lasting effects on the host. Probiotic candidates are commonly screened in in vitro assays, but the transfer to in vivo assessment is often problematic. In conclusion, modulation of the host-associated microbiome by the use of complex probiotics is promising, but a solid understanding of the interactions involved is only in its infancy and requires further research. Probiotics could be used to explore novel ingredients such as chitin-rich insect meal, which cannot be digested by the fish host alone. Most importantly, probiotics offer the opportunity to improve stress and disease resistance, which is among the most pressing problems in aquaculture.


2006 ◽  
Vol 85 (9) ◽  
pp. 1576-1583 ◽  
Author(s):  
C. Jansen van Rensburg ◽  
C.E.J. Van Rensburg ◽  
J.B.J. Van Ryssen ◽  
N.H. Casey ◽  
G.E. Rottinghaus

2022 ◽  
Vol 12 ◽  
Author(s):  
Xiangbing Mao ◽  
Rui Sun ◽  
Qingxiang Wang ◽  
Daiwen Chen ◽  
Bing Yu ◽  
...  

Inflammatory bowel disease (namely, colitis) severely impairs human health. Isoleucine is reported to regulate immune function (such as the production of immunoreactive substances). The aim of this study was to investigate whether l-isoleucine administration might alleviate dextran sulfate sodium (DSS)-induced colitis in rats. In the in vitro trial, IEC-18 cells were treated by 4 mmol/L l-isoleucine for 12 h, which relieved the decrease of cell viability that was induced by TNF-α (10 ng/ml) challenge for 24 h (P &lt;0.05). Then, in the in vivo experiment, a total of 44 Wistar rats were allotted into 2 groups that were fed l-isoleucine-supplemented diet and control diet for 35 d. From 15 to 35 d, half of the rats in the 2 groups drank the 4% DSS-adding water. Average daily gain, average daily feed intake and feed conversion of rats were impaired by DSS challenge (P &lt;0.05). Drinking the DSS-supplementing water also increased disease activity index (DAI) and serum urea nitrogen level (P &lt;0.05), shortened colonic length (P &lt;0.05), impaired colonic enterocyte apoptosis, cell cycle, and the ZO-1 mRNA expression (P &lt;0.05), increased the ratio of CD11c-, CD64-, and CD169-positive cells in colon (P &lt;0.05), and induced extensive ulcer, infiltration of inflammatory cells, and collagenous fiber hyperplasia in colon. However, dietary l-isoleucine supplementation attenuated the negative effect of DSS challenge on growth performance (P &lt;0.05), DAI (P &lt;0.05), colonic length and enterocyte apoptosis (P &lt;0.05), and dysfunction of colonic histology, and downregulated the ratio of CD11c-, CD64-, and CD169-positive cells, pro-inflammation cytokines and the mRNA expression of TLR4, MyD88, and NF-κB in the colon of rats (P &lt;0.05). These results suggest that supplementing l-isoleucine in diet improved the DSS-induced growth stunting and colonic damage in rats, which could be associated with the downregulation of inflammation via regulating TLR4/MyD88/NF-κB pathway in colon.


2021 ◽  
Vol 14 (2) ◽  
pp. 523-536
Author(s):  
Essam S. Soliman ◽  
Rania T. Hamad ◽  
Mona S. Abdallah

Background and Aim: Probiotics improve intestinal balance through bacterial antagonism and competitive exclusion. This study aimed to investigate the in vitro antimicrobial activity, as well as the in vivo preventive, immunological, productive, and histopathological modifications produced by probiotic Bacillus subtilis. Materials and Methods: The in vitro antimicrobial activities of B. subtilis (5×106 CFU/g; 0.5, 1.0*, 1.5, and 2.0 g/L) were tested against Escherichia coli O157: H7, Salmonella Typhimurium, Candida albicans, and Trichophyton mentagrophytes after exposure times of 0.25, 0.5, 1, and 2 h using minimal inhibitory concentration procedures. A total of 320 1-day-old female Ross broiler chickens were divided into five groups. Four out of the five groups were supplemented with 0.5, 1.0*, 1.5, and 2.0 g/L probiotic B. subtilis from the age of 1 day old. Supplemented 14-day-old broiler chickens were challenged with only E. coli O157: H7 (4.5×1012 CFU/mL) and S. Typhimurium (1.2×107 CFU/mL). A total of 2461 samples (256 microbial-probiotic mixtures, 315 sera, 315 duodenal swabs, and 1575 organs) were collected. Results: The in vitro results revealed highly significant (p<0.001) killing rates at all-time points in 2.0 g/L B. subtilis: 99.9%, 90.0%, 95.6%, and 98.8% against E. coli, S. Typhimurium, C. albicans, and T. mentagrophytes, respectively. Broilers supplemented with 1.5 and 2.0 g/L B. subtilis revealed highly significant increases (p<0.01) in body weights, weight gains, carcass weights, edible organs' weights, immune organs' weights, biochemical profile, and immunoglobulin concentrations, as well as highly significant declines (p<0.01) in total bacterial, Enterobacteriaceae, and Salmonella counts. Histopathological photomicrographs revealed pronounced improvements and near-normal pictures of the livers and hearts of broilers with lymphoid hyperplasia in the bursa of Fabricius, thymus, and spleen after supplementation with 2.0 g/L B. subtilis. Conclusion: The studies revealed that 1.5-2.0 g of probiotic B. subtilis at a concentration of 5×106 CFU/g/L water was able to improve performance, enhance immunity, and tissue architecture, and produce direct antimicrobial actions.


2013 ◽  
Vol 55 (4) ◽  
pp. 251-259 ◽  
Author(s):  
Aparna Upadhyay ◽  
Vinay K. Singh ◽  
Dinesh K. Singh

SUMMARY The molluscicidal activity of the leaf powder of Moringa oleifera and lyophilized fruit powder of Momordica charantia against the snail Lymnaea acuminata was time and concentration dependent. M. oleifera leaf powder (96 h LC50: 197.59 ppm) was more toxic than M. charantia lyophilized fruit powder (96 h LC50: 318.29 ppm). The ethanolic extracts of M. oleifera leaf powder and Momordica charantia lyophilized fruit powder were more toxic than other organic solvent extracts. The 96 h LC50 of the column purified fraction of M. oleifera leaf powder was 22.52 ppm, while that of M. charantia lyophilized fruit powder was 6.21 ppm. Column, thin layer and high performance liquid chromatography analysis show that the active molluscicidal components in M. oleifera leaf powder and lyophilized fruit of M. charantia are benzylamine (96 h LC50: 2.3 ppm) and momordicine (96 h LC50: 1.2 ppm), respectively. Benzylamine and momordicine significantly inhibited, in vivo and in vitro, the acetylcholinesterase (AChE), acid and alkaline phosphatase (ACP/ALP) activities in the nervous tissues of L. acuminata. Inhibition of AChE, ACP and ALP activity in the nervous tissues of L. acuminata by benzylamine and momordicine may be responsible for the molluscicidal activity of M. oleifera and M. charantia fruits, respectively.


Sign in / Sign up

Export Citation Format

Share Document