scholarly journals Microencapsulation Improved Fumaric Acid and Thymol Effects on Broiler Chickens Challenged With a Short-Term Fasting Period

2021 ◽  
Vol 8 ◽  
Author(s):  
Nedra Abdelli ◽  
José Francisco Pérez ◽  
Ester Vilarrasa ◽  
Diego Melo-Duran ◽  
Irene Cabeza Luna ◽  
...  

The first objective of this study was to demonstrate the usefulness of the microencapsulation technique to protect fumaric acid and thymol, avoiding their early absorption and ensuring their slow release throughout the gastrointestinal tract (GIT). For this purpose, the release of a lipid matrix microencapsulated brilliant blue (BB) was assessed in vitro, using a simulated broiler intestinal fluid, and in vivo. In vitro results showed that more than 60% of BB color reached the lower intestine, including 26.6 and 29.7% in the jejunum and ileum, respectively. The second objective was to determine the effects of microencapsulated fumaric acid, thymol, and their mixture on the performance and gut health of broilers challenged with a short-term fasting period (FP). One-day-old male ROSS 308 chickens (n = 280) were randomly distributed into seven treatments, with 10 replicates of four birds each. Dietary treatments consisted of a basal diet as negative control (NC), which was then supplemented by either non-microencapsulated fumaric acid (0.9 g/kg), thymol (0.6 g/kg), or a mixture of them. The same additive doses were also administered in a microencapsulated form (1.5 and 3 g/kg for the fumaric acid and thymol, respectively). At day 21, chickens were subjected to a 16.5-h short-term FP to induce an increase in intestinal permeability. Growth performance was assessed weekly. At day 35, ileal tissue and cecal content were collected from one bird per replicate to analyze intestinal histomorphology and microbiota, respectively. No treatment effect was observed on growth performance from day 1 to 21 (p > 0.05). Microencapsulated fumaric acid, thymol, or their mixture improved the overall FCR (feed conversion ratio) and increased ileal villi height-to-crypt depth ratio (VH:CD) (p < 0.001) on day 35 of the experiment. The microencapsulated mixture of fumaric acid and thymol increased cecal abundance of Bacteroidetes, Bacillaceae, and Rikenellaceae, while decreasing that of Pseudomonadaceae. These results indicate that the microencapsulation technique used in the current study can be useful to protect fumaric acid and thymol, avoiding early absorption, ensure their slow release throughout the GIT, and improve their effects on fasted broiler chickens.

2015 ◽  
Vol 81 (17) ◽  
pp. 5880-5888 ◽  
Author(s):  
C. De Maesschalck ◽  
V. Eeckhaut ◽  
L. Maertens ◽  
L. De Lange ◽  
L. Marchal ◽  
...  

ABSTRACTIn broiler chickens, feed additives, including prebiotics, are widely used to improve gut health and to stimulate performance. Xylo-oligosaccharides (XOS) are hydrolytic degradation products of arabinoxylans that can be fermented by the gut microbiota. In the current study, we aimed to analyze the prebiotic properties of XOS when added to the broiler diet. Administration of XOS to chickens, in addition to a wheat-rye-based diet, significantly improved the feed conversion ratio. XOS significantly increased villus length in the ileum. It also significantly increased numbers of lactobacilli in the colon andClostridiumcluster XIVa in the ceca. Moreover, the number of gene copies encoding the key bacterial enzyme for butyrate production, butyryl-coenzyme A (butyryl-CoA):acetate CoA transferase, was significantly increased in the ceca of chickens administered XOS. In this group of chickens, at the species level,Lactobacillus crispatusandAnaerostipes butyraticuswere significantly increased in abundance in the colon and cecum, respectively.In vitrofermentation of XOS revealed cross-feeding betweenL. crispatusandA. butyraticus. Lactate, produced byL. crispatusduring XOS fermentation, was utilized by the butyrate-producingAnaerostipesspecies. These data show the beneficial effects of XOS on broiler performance when added to the feed, which potentially can be explained by stimulation of butyrate-producing bacteria through cross-feeding of lactate and subsequent effects of butyrate on gastrointestinal function.


2005 ◽  
Vol 288 (6) ◽  
pp. R1598-R1605 ◽  
Author(s):  
Philip A. Veillette ◽  
Graham Young

A method to culture tissue explants of the intestine from freshwater-adapted sockeye salmon ( Oncorhynchus nerka) was developed to assess possible direct effects of cortisol on Na+-K+-ATPase activity. As judged by several criteria, explants from pyloric ceca and the posterior region of the intestine remained viable during short-term (6-day) culture, although Na+-K+-ATPase activity declined and basolateral components of the enterocytes were observed to be partially degraded. Addition of cortisol to the culture medium maintained Na+-K+-ATPase activity (over 2–12 days) above that of control explants and, in some cases, was similar to levels before culture. The response to cortisol was dose dependent (0.001–10 μg/ml). Within the physiological range, the response was specific for cortisol and showed the following hierarchy: dexamethasone ≥ cortisol > 11-deoxycortisol > cortisone. Insulin maintained Na+-K+-ATPase activity over controls in explants of ceca but not posterior intestine. To compare in vivo and in vitro responses, slow-release implants of cortisol (50 μg/g) were administered to salmon for 7 days. This treatment elevated plasma cortisol levels and stimulated Na+-K+-ATPase activity in both intestinal regions. The results demonstrate that the teleost intestine is a direct target of cortisol, this corticosteroid protects in vitro functionality of Na+-K+-ATPase, and explants retain cortisol responsiveness during short-term culture.


2021 ◽  
Vol 8 ◽  
Author(s):  
Inkyung Park ◽  
Doyun Goo ◽  
Hyoyoun Nam ◽  
Samiru S. Wickramasuriya ◽  
Kichoon Lee ◽  
...  

Two studies were conducted to evaluate the effects of maltol as a postbiotic on innate immunity, gut health, and enteric infection. In the first study, an in vitro culture system was used to evaluate the effects of maltol on the innate immune response of chicken macrophage cells (CMC), gut integrity of chicken intestinal epithelial cells (IEC), anti-parasitic activity against Eimeria maxima, and differentiation of quail muscle cells (QMC) and primary chicken embryonic muscle cells (PMC). All cells seeded in the 24-well plates were treated with maltol at concentrations of 0.1, 1.0, and 10.0 μg. CMC and IEC were stimulated by lipopolysaccharide to induce an innate immune response, and QMC and PMC were treated with 0.5 and 2% fetal bovine serum, respectively. After 18 h of incubation, pro-inflammatory cytokines, tight junction proteins (TJPs), and muscle cell growth markers were measured. In the second study, the dietary effect of maltol was evaluated on disease parameters in broiler chickens infected with E. maxima. Eighty male 1-day-old broiler chickens were allocated into the following four treatment groups: (1) Control group without infection, (2) Basal diet with E. maxima, (3) High maltol (HI; 10.0 mg /kg feed) with E. maxima, and (4) Low maltol (LO; 1.0 mg/kg feed) with E. maxima. Body weights (BW) were measured on days 0, 7, 14, 20, and 22. All chickens except the CON group were orally infected with 104E. maxima per chicken on day 14. Jejunum samples were collected for gut lesion scoring, and the gene expression of cytokines and TJPs. Data was analyzed using PROC MIXED in SAS. In vitro, maltol not only increased TJPs in IEC and cytokines in the LPS-stimulated CMC but also showed direct cytotoxicity against sporozoites of E. maxima. In vivo, the HI group improved the BW, reduced the gut lesion scores and fecal oocyst shedding, and decreased jejunal TNFSF15 and IL-1β expression in E. maxima-infected chickens. In conclusion, these results demonstrate the beneficial effects of dietary maltol in the enhancement of growth performance, gut health, and coccidiosis resistance and the applicability of maltol as a postbiotic for the replacement of antibiotic growth promoters in commercial poultry production.


Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 349 ◽  
Author(s):  
Javier Herrero-Encinas ◽  
Marta Blanch ◽  
José J. Pastor ◽  
David Menoyo

The effects of supplementing chicken diets with an olive pomace extract (OE) from Olea europaea on performance and gut health after a challenge of intestinal permeability (IP) increase were studied. Treatments included a control diet with no additives (CF), and diets supplemented with 100 ppm of monensin (MF) or with 500 (OE500F) and 1500 ppm (OE1500F) of an OE. At 14 d, all birds, except those allocated in a control group (CNF), were submitted to a 15.5 h short-term fasting period to induce IP increase. Fasting increased (p < 0.05) lactulose/mannitol ratio and Alpha 1 Acid Glycoprotein concentration, and reduced (p < 0.001) villus/crypt ratio. Moreover, a down-regulation of Claudin-1 (p < 0.05), an up-regulation of TLR4 and IL-8 (p < 0.05) ileal gene expression was observed in CF birds compared to CNF. OE500F treatment reduced duodenal crypt depth compared to CF (p < 0.05; OE linear effect). Mannitol concentration and ileal IL-8 expression were reduced in OE500F compared to CF and OE1500F (p = 0.05). Fasting challenge induced an increase in IP triggering an inflammatory response. Supplementation of OE up to 1500 ppm did not affect growth performance and alleviated some of the negative effects of the fasting challenge.


Author(s):  
Abderrahmen Rahmani ◽  
Hamza Ahmed Laloui ◽  
Hadjer Zaak ◽  
Abderrahmen Selmania ◽  
Karima Oufroukh ◽  
...  

2020 ◽  
Vol 71 (1) ◽  
pp. 2047
Author(s):  
H. AGHDAM SHAHRYAR ◽  
A. LOTFI

The aim of present study was to investigate the short-term and long-term effect of the peripheral administration of ghrelin on the growth performance (feed intake, weight gain, and feed conversion ratio), carcass quality, and selected serum biochemical (glucose, total cholesterol, triglyceride, and total protein) and hormonal (T3, T4, and corticostrone) indices in broiler chickens. 240 one-day-old broiler chickens were selected, and allocated into three treatment groups (control and two experimental groups). On day-21 of the rearing period, ghrelin was peripherally administrated to three experimental groups. The control group contained birds without any administration of peptide or solution, groups G50 and G100; included birds with Ip-injection of 50 and 100 (ng/100g BW) ghrelin peptide, respectively. The peripheral administration of exogenous ghrelin did not affect feed intake, body weight gain (BWG), feed conversion ratio (FCR) and carcass characteristics in broiler chickens. In short-term samples taken 12h after ghrelin infusion, the glucose level was increased in ghrelin-treated groups (162 and 151 mg/dl in G50 and G100 compared with 117 mg/dl in control; P< 0.01) and there were significant declines for TC, triglyceride, and TP in the ghrelin-treated groups (G50 and G100) compared with the control. In addition, long-term glucose level has a greater value in G50 and G100 (182 and 200.66 mg/dl) compared with control (133.60 mg/dl) group (P< 0.01). A significant decline was also observed for TC and triglyceride content in the ghrelin-treated groups (P<0.05). There was no significant difference among groups for TP in short-term and long-term samples. There was a significant increase for T4 in ghrelin-treated groups (G50 and G100) compared with the control (4.55 and 4.57 ng/ml vs 4.20 ng/ml respectively; P< 0.05) in long-term samples. In conclusion, the peripheral administration of ghrelin in broiler chickens, during the commercial rearing period did not affect the overall growth performance, carcass quality and feed conversion ratio. The infusion of exogenous ghrelin may increase the levels of serum glucose, decrease total cholesterol and triglyceride, and T4 levels are increased in the long-term (and not in the short-term or 12h after administration).


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3514
Author(s):  
Aimi Zabidi ◽  
Fatimah Md Yusoff ◽  
S. M. Nurul Amin ◽  
Nur Jasmin Mohd Yaminudin ◽  
Puvaneswari Puvanasundram ◽  
...  

Biofloc technology has shown positive effects in aquaculture, especially on the growth performance of cultured animals. The aims of this study were to evaluate the effects of adding different probiotic strains in a biofloc system on the growth performance and disease resistance of red hybrid tilapia (Oreochromis spp.). Three different probiotics (Lysinibacillus fusiformis SPS11, Bacillus amyloliquefaciens L9, and Enterococcus hirae LAB3), commercial probiotics (MG1) and a mixed probiotics (MP) combining all three strains were used in this study. The in vitro assay results showed that the mixed probiotic (MP) was able to inhibit the growth of Streptococcus agalactiae and Streptococcus iniae significantly compared to the single and commercial probiotic. The efficacy of MP was further tested in in vivo tilapia culture challenged with S. agalactiae. The best specific growth rate (3.73 ± 0.23% day−1) and feed conversion ratio (0.76 ± 0.04) were recorded in the group of biofloc with addition of MP. After being challenged with S. agalactiae, the group of biofloc with MP had significantly higher survival (83 ± 1.43%) compared to the other groups. Furthermore, the nitrogen concentration (NO2-N and NH4-N) was significantly lower in all the biofloc groups compared to the control. Hence, the addition of probiotics was able to provide beneficial effects to red hybrid tilapia culture in the biofloc system.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 167
Author(s):  
Mohammed M. Qaid ◽  
Saud I. Al-Mufarrej ◽  
Mahmoud M. Azzam ◽  
Maged A. Al-Garadi ◽  
Hani H. Albaadani ◽  
...  

Coccidiosis a huge economic burden in poultry farms where the pathogen Eimeria harms animal well-being and survival. Besides synthetic anti-coccidial drugs, natural herbs appear to be an alternative way to prevent avian coccidiosis. Rumex nervosus (RN), a phytogenic shrub, has received considerable attention in recent years due to its significant anti-microbial effects; however, limited knowledge exists about its potential anti-coccidial functions. This study was conducted to evaluate the prophylactic and therapeutic activities of RN leaf powder in broilers infected with Eimeria tenella. Infected chickens received a commercial diet containing 1, 3, or 5 g RN powder/kg diet compared to infected broilers that treated with Sacox (PC) or compared to uninfected broilers that received a commercial diet alone (NC). Results showed that RN powder significantly (p < 0.05) reduced the lesion scores and suppressed the output of oocysts per gram (OPG) in chickens’ feces. Although RN was unable to minimize the weight gain loss due to emeriosis, RN at level 1 g improved the feed conversion ratio. Therefore, RN powder, at 5 g, possesses moderate anti-coccidial effects and hence could be used to treat avian coccidiosis in field conditions; however, further studies are required to investigate, in vitro or in vivo, the anti-coccidial potential of active ingredients.


2014 ◽  
Vol 3 (1) ◽  
pp. 150-157
Author(s):  
Khalid M. Gaafar

The research was conducted to study the effect of feeding broiler chickens on diets containing isomaltooligosaccharides on the growth performance, carcass traits and immune response. 90-one day old broiler chicks were used according to completely randomized two treatment groups and one control, 30 birds each. Birds fed ad-libitum on basal starter and grower-finisher diets for 35 day. Diets of treatment`s groups contained 0.5 g/Kg and 1 g/Kg of Isomaltooligosaccharides, while the control group fed on the basal diets without Isomaltooligosaccharides supplementation. Dietary supplementation of broiler chickens with Isomaltooligosaccharides improved body weight, feed conversion, carcass traits, two lymphoid organs weight and log antibody titer against avian flu vaccine. Most of the highest values were for birds fed low levels of Isomaltooligosaccharides. Feed intake decreases as Isomaltooligosaccharides level increases. Dietary supplementation with Isomaltooligosaccharides did not affect the lipids profile (triglycerides, total cholesterol, LDL and HDL), however the blood VLDL levels decreased with increased levels of Malondialdehyde and Glutathione reductase. Collectively, Dietary supplementation of broiler chickens with 0.5 g/Kg diet of Isomaltooligosaccharides improved growth performance, carcass traits and immune status.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2027
Author(s):  
Doaa Ibrahim ◽  
Tamer Ahmed Ismail ◽  
Eman Khalifa ◽  
Shaimaa A. Abd El-Kader ◽  
Dalia Ibrahim Mohamed ◽  
...  

Necrotic enteritis (NE) caused by Clostridium perfringens (C. perfringens) results in impaired bird growth performance and increased production costs. Nanotechnology application in the poultry industry to control NE outbreaks is still not completely clarified. Therefore, the efficacy of dietary garlic nano-hydrogel (G-NHG) on broilers growth performance, intestinal integrity, economic returns and its potency to alleviate C. perfringens levels using NE challenge model were addressed. A total of 1200 male broiler chicks (Ross 308) were assigned into six groups; four supplemented with 100, 200, 300 or 400 mg of G-NHG/kg diet and co-challenged with C. perfringens at 21, 22 and 23 d of age and two control groups fed basal diet with or without C. perfringens challenge. Over the total growing period, the 400 mg/kg G-NHG group had the most improved body weight gain and feed conversion efficiency regardless of challenge. Parallel with these results, the mRNA expression of genes encoding digestive enzymes (alpha 2A amylase (AMY2A), pancreatic lipase (PNLIP) and cholecystokinin (CCK)) and intestinal barriers (junctional adhesion molecule-2 (JAM-2), occludin and mucin-2 (Muc-2)) were increased in groups fed G-NHG at higher levels to be nearly similar to those in the unchallenged group. At 14 d post challenge, real-time PCR results revealed that inclusion of G-NHG led to a dose-dependently decrease in the C. perfringens population, thereby decreasing the birds’ intestinal lesion score and mortality rates. Using 400 mg/kg of G-NHG remarkably ameliorated the adverse effects of NE caused by C. perfringens challenge, which contributed to better growth performance of challenged birds with rational economic benefits.


Sign in / Sign up

Export Citation Format

Share Document