scholarly journals Precision Agriculture for Crop and Livestock Farming—Brief Review

Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2345
Author(s):  
António Monteiro ◽  
Sérgio Santos ◽  
Pedro Gonçalves

In the last few decades, agriculture has played an important role in the worldwide economy. The need to produce more food for a rapidly growing population is creating pressure on crop and animal production and a negative impact to the environment. On the other hand, smart farming technologies are becoming increasingly common in modern agriculture to assist in optimizing agricultural and livestock production and minimizing the wastes and costs. Precision agriculture (PA) is a technology-enabled, data-driven approach to farming management that observes, measures, and analyzes the needs of individual fields and crops. Precision livestock farming (PLF), relying on the automatic monitoring of individual animals, is used for animal growth, milk production, and the detection of diseases as well as to monitor animal behavior and their physical environment, among others. This study aims to briefly review recent scientific and technological trends in PA and their application in crop and livestock farming, serving as a simple research guide for the researcher and farmer in the application of technology to agriculture. The development and operation of PA applications involve several steps and techniques that need to be investigated further to make the developed systems accurate and implementable in commercial environments.

2021 ◽  
Vol 17 (4) ◽  
pp. 1-30
Author(s):  
Qiben Yan ◽  
Jianzhi Lou ◽  
Mehmet C. Vuran ◽  
Suat Irmak

Precision agriculture has become a promising paradigm to transform modern agriculture. The recent revolution in big data and Internet-of-Things (IoT) provides unprecedented benefits including optimizing yield, minimizing environmental impact, and reducing cost. However, the mass collection of farm data in IoT applications raises serious concerns about potential privacy leakage that may harm the farmers’ welfare. In this work, we propose a novel scalable and private geo-distance evaluation system, called SPRIDE, to allow application servers to provide geographic-based services by computing the distances among sensors and farms privately. The servers determine the distances without learning any additional information about their locations. The key idea of SPRIDE is to perform efficient distance measurement and distance comparison on encrypted locations over a sphere by leveraging a homomorphic cryptosystem. To serve a large user base, we further propose SPRIDE+ with novel and practical performance enhancements based on pre-computation of cryptographic elements. Through extensive experiments using real-world datasets, we show SPRIDE+ achieves private distance evaluation on a large network of farms, attaining 3+ times runtime performance improvement over existing techniques. We further show SPRIDE+ can run on resource-constrained mobile devices, which offers a practical solution for privacy-preserving precision agriculture IoT applications.


2021 ◽  
Vol 3 (1) ◽  
pp. 2
Author(s):  
Diana Daccak ◽  
Inês Carmo Luís ◽  
Ana Coelho Marques ◽  
Ana Rita F. Coelho ◽  
Cláudia Campos Pessoa ◽  
...  

As the human population is growing worldwide, the food demand is sharply increasing. Following this assumption, strategies to enhance the food production are being explored, namely, smart farming, for monitoring crops during the production cycle. In this study, a vineyard of Vitis vinifera cv. Moscatel located in Palmela (N 38°35′47.113′′ O 8°40′46.651) was submitted to a Zn biofortification workflow, through foliar application of zinc oxide (ZnO) or zinc sulfate (ZnSO4) (at a concentration of 60% and 90%—900 g·ha−1 and 1350 g·ha−1, respectively). The field morphology and vigor of the vineyard was performed through Unmanned Aerial Vehicles (UAVs) images (assessed with altimetric measurement sensors), synchronized by GPS. Drainage capacity and slopes showed one-third of the field with reduced surface drainage and a maximum variation of 0.80 m between the extremes (almost flat), respectively. The NDVI (Normalized Difference Vegetation Index) values reflected a greater vigor in treated grapes with treatment SZn90 showing a higher value. These data were interpolated with mineral content, monitored with atomic absorption analysis (showing a 1.3-fold increase for the biofortification index). It was concluded that the used technologies furnishes specific target information in real time about the crops production.


2020 ◽  
pp. 12-19
Author(s):  
Yu. V. Chesnokov

Modern crop cultivation technologies have reached the limits of “saturation” both in the ecological (environmental pollution, suppression of the mechanisms of its self-regulation), energy (exponential growth of irreplaceable energy costs for each additional unit of production), and in production. In this regard, environmental factors (air drought, frosts, active temperatures, etc.), which cannot be optimized, are becoming increasingly important in ensuring a steady increase in the yield of cultivated plant forms. In recent decades, more and more attention has been paid to technogenic and biological systems of agriculture, based on the ecologization and biologization of the intensification processes of adaptive crop production. Such approaches are the precision agriculture system (PA) and QTL analysis. Using these approaches allows not only to ensure a steady increase in productivity due to the combined use of the advantages of precision farming and molecular genetic assessment, including the creation of new forms and varieties that are responsive to РА agricultural practices, but also to level the negative impact of abiotic and biotic environmental factors that limit the size and quality of the crop as well as plant productivity. It is shown that the strategy of adaptive intensification of crop production through the use of the TK system and QTL analysis approaches is not alternative to existing farming systems, however, it focuses modern agriculture on the growth of knowledge-intensive agricultural production as a whole. An analysis of the causes under consideration, the current unfavorable trends in modern crop production and agriculture, clearly shows their scale and long-term nature, and therefore the inevitability of the search for new priorities for intensification of crop production and agriculture, providing a qualitatively new stage of their development in the interests of man.


Author(s):  
Sarita Tripathy ◽  
Shaswati Patra

The huge number of items associated with web is known as the internet of things. It is associated with worldwide data consisting of various components and different types of gadgets, sensors, and software, and a large variety of other instruments. A large number of applications that are required in the field of agriculture should implement methods that should be realistic and reliable. Precision agriculture practices in farming are more efficient than traditional farming techniques. Precision farming simultaneously analyzes data along with generating it by the use of sensors. The application areas include tracking of farm vehicles, monitoring of the livestock, observation of field, and monitoring of storage. This type of system is already being accepted and adopted in many countries. The modern method of smart farming has started utilizing the IoT for better and faster yield of crops. This chapter gives a review of the various IoT techniques used in smart farming.


Author(s):  
Thomas Koutsos ◽  
Georgios Menexes

Precision agriculture (PA) as an integrated information- and production-based farming system is designed to delivery high-end technology solutions to increase farm production efficiency and profitability while minimizing environmental impacts on the ecosystems and the environment. PA technologies are technology innovations that incorporate recent advances in modern agriculture providing evidence for lower production costs, increased farming efficiency and reduced impacts. However, the adoption of the precision agriculture technologies has encountered difficulties such as additional application or management costs and investment on new equipment and trained employees. Some of these PA technologies were proven efficient, providing tangible benefits with lower costs and as a result they quickly gained scientific interest. To investigate further the economic, agronomic, and environmental benefits from the adoption of PA technologies a systematic review was conducted, based on the systematic search and evaluation of related eligible articles.


2014 ◽  
Vol 513-517 ◽  
pp. 1519-1522 ◽  
Author(s):  
Bin Peng Wang

This paper involves the modern agricultural application control system which is based on internet of things, and this intelligent management system uses intelligent control technology such as S7-300, GSM,WSN and Zigbee to realize the modernization of rural security, agricultural production and residents living fully intelligent managed. This system applies precision agriculture, digital image processing, wireless data transmission and other fields, really combining digital management technology with embedded technology. At the same time, this system which is based on internet of things is the necessary path of modern agriculture informatization strategy. With the mature development of technology of internet of things in modern society, modern agriculture application management system based on internet of things will bring new change to agriculture and high efficiency of agricultural production.


Climate ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 44 ◽  
Author(s):  
Naoum Tsolakis ◽  
Eirini Aivazidou ◽  
Jagjit Singh Srai

Growing global food demand and security concerns dictate the need for state-of-the-art food production technologies to increase farming efficiency. Concurrently, freshwater overexploitation in agriculture, especially in arid and water-scarce areas, emphasises the vital role of appropriate water-saving irrigations techniques to ensure natural resources sustainability in food supply networks. In line with the development of automated systems, the use of sensors for water monitoring, indicatively in the cases of smart farming or precision agriculture, could further promote the preservation of freshwater resources. To this end, this research first provides a review of sensor applications for improving sustainability in agrifood systems. We then focus on digital technologies applied for monitoring and assessing freshwater utilisation in the food commodities sector based on academic literature and real-world business evidence. A contextual map is developed for capturing the main technical, environmental and economic factors affecting the selection of sensors for water monitoring and stewardship during agricultural production. This first-effort framework, in terms of sensor-based freshwater monitoring, aims at supporting the agrifood system’s decision makers to identify the optimal sensor applications for improving sustainability and water efficiency in agricultural operations.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2760 ◽  
Author(s):  
Karim Fathallah ◽  
Mohamed Abid ◽  
Nejib Ben Hadj-Alouane

Internet of things (IoT) for precision agriculture or Smart Farming (SF) is an emerging area of application. It consists essentially of deploying wireless sensor networks (WSNs), composed of IP-enabled sensor nodes, in a partitioned farmland area. When the surface, diversity, and complexity of the farm increases, the number of sensing nodes increases, generating heavy exchange of data and messages, and thus leading to network congestion, radio interference, and high energy consumption. In this work, we propose a novel routing algorithm extending the well known IPv6 Routing Protocol for Low power and Lossy Networks (RPL), the standard routing protocol used for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN). It is referred to as the Partition Aware-RPL (PA-RPL) and improves the performance of the standard RPL. In contrast to RPL, the proposed technique builds a routing topology enabling efficient in-network data aggregation, hence dramatically reducing data traffic through the network. Performance analysis of a typical/realistic precision agriculture case, considering the potato pest prevention from the well-known late blight disease, shows that PA-RPL improves energy saving up to 40 % compared to standard RPL.


Sign in / Sign up

Export Citation Format

Share Document