scholarly journals Nutrition and Digestive Physiology of the Broiler Chick: State of the Art and Outlook

Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2795
Author(s):  
Velmurugu Ravindran ◽  
Mohammad Reza Abdollahi

Because the intestine is the primary nutrient supply organ, early development of digestive function in newly hatched chick will enable it to better utilize nutrients, grow efficiently, and achieve the genetic potential of contemporary broilers. Published data on the growth and digestive function of the gastrointestinal tract in neonatal poultry were reviewed. Several potential strategies to improve digestive tract growth and function in newly hatched chick are available and the options include breeder nutrition, in ovo feeding, early access to feed and water, special pre-starter diets, judicious use of feed additives, and early programming.

2021 ◽  
Vol 8 ◽  
Author(s):  
Eric H. Yang ◽  
Konstantinos Marmagkiolis ◽  
Dinu V. Balanescu ◽  
Abdul Hakeem ◽  
Teodora Donisan ◽  
...  

Since the 1990s, there has been a steady increase in the number of cancer survivors to an estimated 17 million in 2019 in the US alone. Radiation therapy today is applied to a variety of malignancies and over 50% of cancer patients. The effects of ionizing radiation on cardiac structure and function, so-called radiation-induced heart disease (RIHD), have been extensively studied. We review the available published data on the mechanisms and manifestations of RIHD, with a focus on vascular disease, as well as proposed strategies for its prevention, screening, diagnosis, and management.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 68-69
Author(s):  
Rajesh Jha ◽  
Razib Das ◽  
Pravin Mishra

Abstract Maintaining a healthy gastrointestinal tract (GIT) is critical for better nutrient utilization, optimum performance, and overall health of poultry. Thus, several nutritional strategies have been tried to improve poultry’s gut health. More recently, different nutrients and feed additives are being used in poultry diets with some success when antibiotic growth promoters (AGP) are not an acceptable option anymore. However, effective modulation of gut health depends on the methods and timing of the compound being available to host animals. Routinely, the alternatives to AGP like prebiotics, probiotics, symbiotic, enzymes, and other nutrients are provided in feed or water to poultry. However, the GIT of the newly hatched poultry is functionally immature, despite going through significant morphological, cellular, and molecular changes toward the end of incubation. Thus, the early growth and development of GIT are of critical importance to enhance nutrients utilization and optimize the growth performance of poultry. Maternal nutrition and in ovo feeding have been used and found to be effective in improving gut health but with inconsistent results. The effects of maternal nutrition on the development and viability of embryo and post-hatch growth performance of birds are documented. However, there is limited information on how maternal nutrition affects the gut health of chicks. In contrast, information on the same from in ovo feeding of nutrients and feed additives has increased in recent years. The results show that in ovo feeding can be a good tool to modulate gut health of post-hatch birds positively. However, more information is needed on the proper route and time of inoculation, optimum doses, and effective combination of different compounds to maximize the benefits of in ovo feeding technique in poultry production.


2021 ◽  
Vol 8 (6) ◽  
pp. 110
Author(s):  
Nathalie Meijerink ◽  
Jean E. de Oliveira ◽  
Daphne A. van Haarlem ◽  
Guilherme Hosotani ◽  
David M. Lamot ◽  
...  

Restrictions on the use of antibiotics in the poultry industry stimulate the development of alternative nutritional solutions to maintain or improve poultry health. This requires more insight in the modulatory effects of feed additives on the immune system and microbiota composition. Compounds known to influence the innate immune system and microbiota composition were selected and screened in vitro, in ovo, and in vivo. Among all compounds, 57 enhanced NK cell activation, 56 increased phagocytosis, and 22 increased NO production of the macrophage cell line HD11 in vitro. Based on these results, availability and regulatory status, six compounds were selected for further analysis. None of these compounds showed negative effects on growth, hatchability, and feed conversion in in ovo and in vivo studies. Based on the most interesting numerical results and highest future potential feasibility, two compounds were analyzed further. Administration of glucose oligosaccharide and long-chain glucomannan in vivo both enhanced activation of intraepithelial NK cells and led to increased relative abundance of lactic acid bacteria (LAB) amongst ileum and ceca microbiota after seven days of supplementation. Positive correlations between NK cell subsets and activation, and relative abundance of LAB suggest the involvement of microbiota in the modulation of the function of intraepithelial NK cells. This study identifies glucose oligosaccharide and long-chain glucomannan supplementation as effective nutritional strategies to modulate the intestinal microbiota composition and strengthen the intraepithelial innate immune system.


Author(s):  
Daniel Elieh Ali Komi ◽  
Wolfgang M. Kuebler

AbstractMast cells (MCs) are critically involved in microbial defense by releasing antimicrobial peptides (such as cathelicidin LL-37 and defensins) and phagocytosis of microbes. In past years, it has become evident that in addition MCs may eliminate invading pathogens by ejection of web-like structures of DNA strands embedded with proteins known together as extracellular traps (ETs). Upon stimulation of resting MCs with various microorganisms, their products (including superantigens and toxins), or synthetic chemicals, MCs become activated and enter into a multistage process that includes disintegration of the nuclear membrane, release of chromatin into the cytoplasm, adhesion of cytoplasmic granules on the emerging DNA web, and ejection of the complex into the extracellular space. This so-called ETosis is often associated with cell death of the producing MC, and the type of stimulus potentially determines the ratio of surviving vs. killed MCs. Comparison of different microorganisms with specific elimination characteristics such as S pyogenes (eliminated by MCs only through extracellular mechanisms), S aureus (removed by phagocytosis), fungi, and parasites has revealed important aspects of MC extracellular trap (MCET) biology. Molecular studies identified that the formation of MCET depends on NADPH oxidase-generated reactive oxygen species (ROS). In this review, we summarize the present state-of-the-art on the biological relevance of MCETosis, and its underlying molecular and cellular mechanisms. We also provide an overview over the techniques used to study the structure and function of MCETs, including electron microscopy and fluorescence microscopy using specific monoclonal antibodies (mAbs) to detect MCET-associated proteins such as tryptase and histones, and cell-impermeant DNA dyes for labeling of extracellular DNA. Comparing the type and biofunction of further MCET decorating proteins with ETs produced by other immune cells may help provide a better insight into MCET biology in the pathogenesis of autoimmune and inflammatory disorders as well as microbial defense.


2021 ◽  
Vol 2 (2) ◽  
pp. 311-338
Author(s):  
Giulia Della Rosa ◽  
Clarissa Ruggeri ◽  
Alessandra Aloisi

Exosomes (EXOs) are nano-sized informative shuttles acting as endogenous mediators of cell-to-cell communication. Their innate ability to target specific cells and deliver functional cargo is recently claimed as a promising theranostic strategy. The glycan profile, actively involved in the EXO biogenesis, release, sorting and function, is highly cell type-specific and frequently altered in pathological conditions. Therefore, the modulation of EXO glyco-composition has recently been considered an attractive tool in the design of novel therapeutics. In addition to the available approaches involving conventional glyco-engineering, soft technology is becoming more and more attractive for better exploiting EXO glycan tasks and optimizing EXO delivery platforms. This review, first, explores the main functions of EXO glycans and associates the potential implications of the reported new findings across the nanomedicine applications. The state-of-the-art of the last decade concerning the role of natural polysaccharides—as targeting molecules and in 3D soft structure manufacture matrices—is then analysed and highlighted, as an advancing EXO biofunction toolkit. The promising results, integrating the biopolymers area to the EXO-based bio-nanofabrication and bio-nanotechnology field, lay the foundation for further investigation and offer a new perspective in drug delivery and personalized medicine progress.


2021 ◽  
Vol 901 (1) ◽  
pp. 012017
Author(s):  
A N Ulanov ◽  
V N Kovshova ◽  
O G Mokrushina ◽  
A V Smirnova ◽  
A L Glubokovskih ◽  
...  

Abstract In the context of the implementation of environmental, resource-saving systems of agriculture, research in the system of biogeocenosis is very relevant: soil – plant-feed-animal-livestock products. Peatlands and developed peat soils are a kind of environment for human activity in this system. As a result of many years of research, it was found that perennial grasses grown on peat soils have differences in chemical composition compared to plants grown on mineral soils. They contain more organic matter and raw protein. However, their digestibility of nutrients is lower than in herbs grown on mineral soils. Therefore, for a full-fledged balanced feeding of cows, the realization of the genetic potential of animal productivity, and the preservation of their health, scientifically-based diets are necessary, developed on the basis of bulky feeds obtained from peat and developed soils, with the introduction of appropriate feed additives in them.


2020 ◽  
Vol 48 (4) ◽  
pp. 1419-1432 ◽  
Author(s):  
Edmund R.S. Kunji ◽  
Jonathan J. Ruprecht

For more than 40 years, the oligomeric state of members of the mitochondrial carrier family (SLC25) has been the subject of debate. Initially, the consensus was that they were dimeric, based on the application of a large number of different techniques. However, the structures of the mitochondrial ADP/ATP carrier, a member of the family, clearly demonstrated that its structural fold is monomeric, lacking a conserved dimerisation interface. A re-evaluation of previously published data, with the advantage of hindsight, concluded that technical errors were at the basis of the earlier dimer claims. Here, we revisit this topic, as new claims for the existence of dimers of the bovine ADP/ATP carrier have emerged using native mass spectrometry of mitochondrial membrane vesicles. However, the measured mass does not agree with previously published values, and a large number of post-translational modifications are proposed to account for the difference. Contrarily, these modifications are not observed in electron density maps of the bovine carrier. If they were present, they would interfere with the structure and function of the carrier, including inhibitor and substrate binding. Furthermore, the reported mass does not account for three tightly bound cardiolipin molecules, which are consistently observed in other studies and are important stabilising factors for the transport mechanism. The monomeric carrier has all of the required properties for a functional transporter and undergoes large conformational changes that are incompatible with a stable dimerisation interface. Thus, our view that the native mitochondrial ADP/ATP carrier exists and functions as a monomer remains unaltered.


2019 ◽  
Vol 13 (4) ◽  
pp. 591
Author(s):  
João Paulo Ferreira Rufino ◽  
Frank George Guimarães Cruz ◽  
Valcely Da Rocha Costa ◽  
André Ferreira Silva ◽  
Pedro Alves de Oliveira Filho ◽  
...  
Keyword(s):  
In Ovo ◽  

2021 ◽  
Author(s):  
Roshan Rao ◽  
Jason Liu ◽  
Robert Verkuil ◽  
Joshua Meier ◽  
John F. Canny ◽  
...  

AbstractUnsupervised protein language models trained across millions of diverse sequences learn structure and function of proteins. Protein language models studied to date have been trained to perform inference from individual sequences. The longstanding approach in computational biology has been to make inferences from a family of evolutionarily related sequences by fitting a model to each family independently. In this work we combine the two paradigms. We introduce a protein language model which takes as input a set of sequences in the form of a multiple sequence alignment. The model interleaves row and column attention across the input sequences and is trained with a variant of the masked language modeling objective across many protein families. The performance of the model surpasses current state-of-the-art unsupervised structure learning methods by a wide margin, with far greater parameter efficiency than prior state-of-the-art protein language models.


Sign in / Sign up

Export Citation Format

Share Document