scholarly journals Experimental Applications and Factors Involved in Validating Thermal Windows Using Infrared Thermography to Assess the Health and Thermostability of Laboratory Animals

Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3448
Author(s):  
Antonio Verduzco-Mendoza ◽  
Antonio Bueno-Nava ◽  
Dehua Wang ◽  
Julio Martínez-Burnes ◽  
Adriana Olmos-Hernández ◽  
...  

Evaluating laboratory animals’ health and thermostability are fundamental components of all experimental designs. Alterations in either one of these parameters have been shown to trigger physiological changes that can compromise the welfare of the species and the replicability and robustness of the results obtained. Due to the nature and complexity of evaluating and managing the species involved in research protocols, non-invasive tools such as infrared thermography (IRT) have been adopted to quantify these parameters without altering them or inducing stress responses in the animals. IRT technology makes it possible to quantify changes in surface temperatures that are derived from alterations in blood flow that can result from inflammatory, stressful, or pathological processes; changes can be measured in diverse regions, called thermal windows, according to their specific characteristics. The principal body regions that were employed for this purpose in laboratory animals were the orbital zone (regio orbitalis), auricular pavilion (regio auricularis), tail (cauda), and the interscapular area (regio scapularis). However, depending on the species and certain external factors, the sensitivity and specificity of these windows are still subject to controversy due to contradictory results published in the available literature. For these reasons, the objectives of the present review are to discuss the neurophysiological mechanisms involved in vasomotor responses and thermogenesis via BAT in laboratory animals and to evaluate the scientific usefulness of IRT and the thermal windows that are currently used in research involving laboratory animals.

Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 177
Author(s):  
Urša Blenkuš ◽  
Ana Filipa Gerós ◽  
Cristiana Carpinteiro ◽  
Paulo de Castro Aguiar ◽  
I. Anna S. Olsson ◽  
...  

Stress-induced hyperthermia (SIH) is a physiological response to acute stressors in mammals, shown as an increase in core body temperature, with redirection of blood flow from the periphery to vital organs. Typical temperature assessment methods for rodents are invasive and can themselves elicit SIH, affecting the readout. Infrared thermography (IRT) is a promising non-invasive alternative, if shown to accurately identify and quantify SIH. We used in-house developed software ThermoLabAnimal 2.0 to automatically detect and segment different body regions, to assess mean body (Tbody) and mean tail (Ttail) surface temperatures by IRT, along with temperature (Tsc) assessed by reading of subcutaneously implanted PIT-tags, during handling-induced stress of pair-housed C57BL/6J and BALB/cByJ mice of both sexes (N = 68). SIH was assessed during 10 days of daily handling (DH) performed twice per day, weekly voluntary interaction tests (VIT) and an elevated plus maze (EPM) at the end. To assess the discrimination value of IRT, we compared SIH between tail-picked and tunnel-handled animals, and between mice receiving an anxiolytic drug or vehicle prior to the EPM. During a 30 to 60 second stress exposure, Tsc and Tbody increased significantly (p < 0.001), while Ttail (p < 0.01) decreased. We did not find handling-related differences. Within each cage, mice tested last consistently showed significantly higher (p < 0.001) Tsc and Tbody and lower (p < 0.001) Ttail than mice tested first, possibly due to higher anticipatory stress in the latter. Diazepam-treated mice showed lower Tbody and Tsc, consistent with reduced anxiety. In conclusion, our results suggest that IRT can identify and quantify stress in mice, either as a stand-alone parameter or complementary to other methods.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 220-221
Author(s):  
Caroline L Francisco ◽  
André M Castilhos ◽  
Daiane C Marques da Silva ◽  
Fabiola Martinez da Silva ◽  
Aline S Aranha ◽  
...  

Abstract This study evaluated the use of the infrared thermography (IT) as a tool to identify the temperament of 75 non-castrated water buffaloes (390±32 days of age; 310±61.27 kg of initial body weight) of 3 genetic groups (GG:Jafarabadi, Mediterranean, and Murrah; n = 25 for each GG). The animals were classified for temperament through the temperament score (TSc) obtained by the mean of the sum of the scores of the time of entry into the squeeze chute (1 to 5: 1=greater time spent for entry; 5=less time spent for entry) and the exit velocity score (1 to 5: 1=lower speed; 5=higher speed) calculated after the period of adaptation to the feedlot (d0). The animals were categorized into adequate (ADQ; TSc≤3) or excitable (EXC; TSc &gt;3) temperaments. The rectal temperature was measured and IT images were obtained (Testo 882 Thermal Imager, Testo, Inc, Germany) from regions of the chest, eye, snout, cheek, foreleg (left side), ribs, hind legs, rear area (left side), and scrotum on d0. Data were analyzed using MIXED procedure in SAS, considering the GG, temperament, and the resulting interaction as fixed effects. Correlation was analyzed using the CORR procedure of SAS. There were no effects of interactions (P ≥ 0.14). ADQ animals showed lower rectal (P = 0.02) and ribs (P = 0.05) temperatures than EXC animals (Table1). Tendencies for temperament effect were detected for chest (P = 0.06) and rear area (P = 0.07). There was no effect of temperament for other variables (P = 0.19). Positive correlations were verified between the TSc and rectal (r=0.36; P &lt; 0.01), chest (r=0.35; P &lt; 0.01), and rear area (r=0.33; P &lt; 0.01) temperatures. Tendency for a positive correlation was detected between TSc and scrotum (r=0.23; P = 0.07). In conclusion, the temperament causes changes in the temperature of some body regions suggesting the IT technology may be a promising tool for assessing the temperament of water buffaloes. Supported by FAPESP (#2018/25939-1; #2014/05473-7).


Author(s):  
Manuel Sillero-Quintana ◽  
Pedro M. Gomez-Carmona ◽  
Ismael Fernández-Cuevas

Sports injuries are one of the most important problems in sports. Moreover, professional sports injuries lead to a difficult recovery process for the athletes, reduced athletic performance, and large economic costs. Infrared thermography (IRT) is a safe, non-invasive and low-cost technique that allows for the rapid and non-contact recording of Skin Temperature (Tsk). Recent research results have demonstrated new applications for this technique; among them, the monitoring and prevention of sports injuries appears to be one of the most interesting applications. Although IRT is not as objective as other methods, it may be sufficiently accurate and reliable as a complementary tool considering the theory that musculoskeletal structures should be in thermal equilibrium when in a healthy state. Therefore, the main contribution of IRT is to help identify an injury before it occurs, providing an opportunity for preventative action.


Author(s):  
Manuel Sillero-Quintana ◽  
Pedro M. Gomez-Carmona ◽  
Ismael Fernández-Cuevas

Sports injuries are one of the most important problems in sports. Moreover, professional sports injuries lead to a difficult recovery process for the athletes, reduced athletic performance, and large economic costs. Infrared thermography (IRT) is a safe, non-invasive and low-cost technique that allows for the rapid and non-contact recording of Skin Temperature (Tsk). Recent research results have demonstrated new applications for this technique; among them, the monitoring and prevention of sports injuries appears to be one of the most interesting applications. Although IRT is not as objective as other methods, it may be sufficiently accurate and reliable as a complementary tool considering the theory that musculoskeletal structures should be in thermal equilibrium when in a healthy state. Therefore, the main contribution of IRT is to help identify an injury before it occurs, providing an opportunity for preventative action.


2019 ◽  
Vol 6 ◽  
Author(s):  
Travis W. Horton ◽  
Nan Hauser ◽  
Shannon Cassel ◽  
K. Frederika Klaus ◽  
Ticiana Fettermann ◽  
...  

Author(s):  
Franck Lelong ◽  
Michel Gradeck ◽  
Benjamin Re´my ◽  
Aboubacar Ouattara ◽  
Denis Maillet

Cooling of a hot metal by a spray occurs in various situations. Such is the case for a loss of coolant accident in a nuclear reactor, where a generated spray impacts the fuel rod assemblies. Design of an experimental characterization setup for cooling a hot (600°C) disk shape Nickel sample by a stream of monodisperse droplets is presented here. Non-invasive excitation/measurement techniques have been used in order to implement an inverse technique for quantitative estimation of both wall heat flux and temperature: heating is made by induction and infrared thermography is used for rear face temperature measurement. Control and calibration of the losses are key points here: their level is of the same order of magnitude as the flux removed by the droplets. Examples of inversion are presented.


Plant Methods ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Beatriz Fernández-Marín ◽  
Othmar Buchner ◽  
Gerald Kastberger ◽  
Federica Piombino ◽  
José Ignacio García-Plazaola ◽  
...  

Abstract Background Non-invasive procedures for the diagnosis of viability of plant or fungal tissues would be valuable for scientific, industrial and biomonitoring purposes. Previous studies showed that infrared thermography (IRT) enables non-invasive assessment of the viability of individual "orthodox" (i.e. desiccation tolerant) seeds upon water uptake. However, this method was not tested for rehydrating tissues of other desiccation tolerant life forms. Furthermore, evaporative cooling could obscure the effects of metabolic processes that contribute to heating and cooling, but its effects on the shape of the "thermal fingerprints" have not been explored. Here, we further adapted this method using a purpose-built chamber to control relative humidity (RH) and gaseous atmosphere. This enabled us to test (i) the influence of relative humidity on the thermal fingerprints during the imbibition of Pisum sativum (Garden pea) seeds, (ii) whether thermal fingerprints can be correlated with viability in lichens, and (iii) to assess the potential influence of aerobic metabolism on thermal fingerprints by controlling the oxygen concentration in the gaseous atmosphere around the samples. Finally, we developed a method to artificially "age" lichens and validated the IRT-based method to assess lichen viability in three lichen species. Results Using either 30% or 100% RH during imbibition of pea seeds, we showed that "live" and "dead" seeds produced clearly discernible "thermal fingerprints", which significantly differed by > |0.15| °C in defined time windows, and that RH affected the shape of these thermal fingerprints. We demonstrated that IRT can also be used to assess the viability of the lichens Lobaria pulmonaria, Pseudevernia furfuracea and Peltigera leucophlebia. No clear relationship between aerobic metabolism and the shape of thermal fingerprints was found. Conclusions Infrared thermography appears to be a promising method for the diagnosis of viability of desiccation-tolerant tissues at early stages of water uptake. For seeds, it is possible to diagnose viability within the first hours of rehydration, after which time they can still be re-dried and stored until further use. We envisage our work as a baseline study for the use of IR imaging techniques to investigate physiological heterogeneity of desiccation tolerant life forms such as lichens, which can be used for biomonitoring, and for sorting live and dead seeds, which is potentially useful for the seed trade.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ahmed Abdelrahman ◽  
Simone Kumstel ◽  
Xianbin Zhang ◽  
Marie Liebig ◽  
Edgar Heinz Uwe Wendt ◽  
...  

Abstract Ethical responsibility, legal requirements and the need to improve the quality of research create a growing interest in the welfare of laboratory animals. Judging the welfare of animals requires readout parameters, which are valid and sensitive as well as specific to assess distress after different interventions. In the present study, we evaluated the sensitivity and specificity of different non-invasive parameters (body weight change, faecal corticosterone metabolites concentration, burrowing and nesting activity) by receiver operating characteristic curves and judged the merit of a multi-parametric analysis by logistic regression. Chronic pancreatitis as well as laparotomy caused significant changes in all parameters. However, the accuracy of these parameters was different between the two animal models. In both animal models, the multi-parametric analysis relying on all the readout parameters had the highest accuracy when predicting distress. This multi-parametric analysis revealed that C57BL/6 mice during the course of chronic pancreatitis often experienced less distress than mice after laparotomy. Interestingly these data also suggest that distress does not steadily increase during chronic pancreatitis. In conclusion, combining these non-invasive methods for severity assessment represents a reliable approach to evaluate animal distress in models such as chronic pancreatitis.


2019 ◽  
Vol 65 (1-2) ◽  
pp. 21-27 ◽  
Author(s):  
Justin R. St. Juliana ◽  
Jocelyn L. Bryant ◽  
Nadja Wielebnowski ◽  
Burt P. Kotler

We evaluated the suitability of a corticosterone enzyme immunoassay (EIA) to monitor excretion of fecal glucocorticoid metabolites (FGM) in response to Adrenocorticotropic hormone (ACTH) and saline injections in three desert rodent species (Gerbillus andersoni allenbyi (GA), Gerbillus nanus (GN), and Gerbilis piridium (GP). We exposed 24 gerbils (N = 9 for GA, N = 7 for GN, N = 8 for GP) to an ACTH and a saline injection at different times. Fecal samples were collected hourly for 24 hours after injection. The average starting concentration (baseline) FGM concentration was 797 ng/g for GA, 183 ng/g for GN, and 749 ng/g for GP. The average peak concentration was 2377 ng/g for GA, 589 ng/g for GN, and 1987 ng/g for GP. We were able to provide a physiological validation for the chosen assay in GAs and GPs, however, our results for GNs were less clear. We found an increase in FGM concentrations on average after 5.5 hours in GA, 3.1 hours in GN, and 3.8 hours in GP. We found a peak in FGM concentration on average after 8.8 hours in GA, 5.6 hours in GN, and 10.3 hours in GP. We determined that FGM concentration returned to starting value on average after 14.4 hours in GA, 9.1 hours in GN, and 15.1 hours in GP. The outcomes of this study can help establish trapping protocols and time frames for FGM monitoring of these wild small mammal populations. The time course for excretion of FGM is similar between the species in this study, and comparable to some non-desert rodents. We found high variation in the time course of excretion within species. This variation needs to be taken into account when monitoring stress responses in the field. By assessing adrenocortical activity using FGM monitoring, stress responses to varying ecological and environmental factors can be reliably examined in the field.


Sign in / Sign up

Export Citation Format

Share Document